Department: Computer Science

Program: Master

Academic year:

Semester:

Course Plan

First: Course Information

Course No.: 1501782	Course Title: Machine Learning		Credit Hours: 3		Theoretical: 3	Practical: 0	
Prerequisite No. an	Section No.: Lecture Time:						
Level in JNQF	9						
Type Of Course:	 Obligatory University Requirement Obligatory Faculty Requirement Obligatory Specialization Requirement Ancillary course 			 Elective University Requirement Elective Faculty Requirement Elective Specialization Requirement 			
Type of Learning:	 □ Face-to-Face Learning ■ Blended Learning (2 Face-to-Face + 1 Asynchronous) □ Online Learning (2 Synchronous+ 1 Asynchronous) 						

Second: Instructor's Information

Course Coordinator:							
Name:		Academic Rank:					
Office Number:		Extension Number:	Email:				
Course Instructor:							
Name:		Academic Rank:					
Office Number:		Extension Number:	Email:				
Office Hours:	Sunday Monda	iy Tuesday Wednesday	y Thursday				

Third: Course Description

This master-level course in machine learning is designed to provide students with advanced knowledge and practical skills in the field of machine learning. The course will cover a wide range of topics, including advanced algorithms, deep learning, reinforcement learning, and applications in various domains. Emphasis will be placed on both theoretical understanding and hands-on implementation, preparing students for real-world applications of machine learning.

Fourth: Course Objectives

- Understand and critically evaluate advanced machine learning algorithms.
- Apply machine learning techniques to solve complex real-world problems.
- Implement and experiment with deep learning architectures.
- Analyse and optimize machine learning models for performance and efficiency.
- Explore applications of machine learning in various domains such as computer vision, natural language processing, and reinforcement learning.

Fifth: Learning Outcomes

Level descriptor according to (JNQF)	CILOs Code	<i>CILOs</i> If any CLO will not be assessed in the course, mark NA.	Associated PILOs Code Choose one PILO for each CILO*	Assessment method Choose at least two methods
	K1	Recall the theoretical foundations of advanced machine learning algorithms, including relating them to fundamental machine learning concepts.	PK1	Mid-term Exam Final Exam
Knowledge	K2	Repeat and explain the key assumptions, limitations, and potential biases of various advanced machine learning techniques.	PK1	Mid-term Exam Final Exam
	К3	Tell the difference between supervised, unsupervised, and reinforcement learning approaches in the context of advanced algorithms.	PK2	Mid-term Exam Final Exam
	S1	Apply advanced machine learning algorithms to solve complex real- world problems in various domains.	PS1	Mid-term Exam Final Exam
	S2	Construct and evaluate machine learning pipelines, including data pre- processing, model creation, and hyperparameter tuning.	PS2	Mid-term Exam Final Exam
Skills	S 3	Compare the performance of different advanced machine learning algorithms for a specific task, interpreting the results critically.	PS3	Mid-term Exam Final Exam
	S4	Employ appropriate techniques for data analysis and visualization to interpret and communicate findings related to advanced machine learning models. PS3		Mid-term Exam Final Exam
	S 5	Develop a critical understanding of the ethical considerations surrounding the use of advanced machine learning models.	PS3	Mid-term Exam Final Exam

	C1	Collaborate effectively with peers in a team setting to solve complex machine learning problems.	PC1	Participation Project
Competencies	C2	Exhibit leadership in planning, executing, and presenting advanced machine learning projects. audiences.	PC2	Participation Project

*CILOs: Course Intended Learning Outcomes; PILOs: Program Intended Learning Outcomes; For each CILO, the PILO could be the same or different.

Sixth: Learning Resources

Main Book:	Machine Learning with PyTorch and Scikit-Learn: Develop machine learning and deep learning models with Python					
Author: Sebastian Ras	schka	<i>Issue No.:</i> – Third Edition	<i>Print:</i> – Packt Publishing,	Publication Year: 2022		
Additional Sources: Website:	 Thimira Amaratunga, Understanding Large Language Models: Learning Their Underlying Concepts and Technologies 1st ed. Edition Apress; 1st ed. edition (November 26, 2023) Francois Chollet ,Deep Learning with Python, Second Edition 2nd Edition 					
Teaching Type:	Classroon	ı 🗆 Laboratory 🗖	Workshop 🔳 N	AS Teams 🗖 Moodle		

Seventh: Course Structure

Week	Course Intended Teaching Outcomes (CILOs)	Topics	Teaching Procedures*	Teaching Methods**	References***
1	IIntroduction fundamental concepts of machine learning, including the different types of machine learning		Face-to-Face	Lecture Preparation	
	K1, K2, S1 S2	Write a Summary	Asynchronous	Asynchronous	Chapter 1

Issue Date: 20/10/2023

2	K1, K2, K3, S2 S3	Supervised Learning: Nearest neighbor, Linear Regression, Logistic Regression, Decision Trees	Face-to-Face	Lecture Preparation	Chapter 2
	K1, K2, S2 S3	Write a Summary	Asynchronous	Asynchronous	Chapter 2
3	K1, K2, S3 S5	Advanced Supervised Learning: Ensemble methods (Bagging, Boosting) and Random Forests and XGBoot	Face-to-Face	Lecturing with active participation	Chapter 2
	K1, K2, S3 S5	Create a dataset	Asynchronous	Asynchronous	Chapter 2
4	K1, K2, K3, S1 S2	Testing and Measurement: Cross-validation techniques (K-fold cross-validation) Model evaluation and validation strategies Bias-variance tradeoff	Lecturing with Face-to-Face active participation		Chapter 2
	K1, K2, K3, S1 S2	Upload dataset	Asynchronous	Asynchronous	Chapter 2
5	K1, K2, K3, S3 S5 Deep Learning: Neural network architectures		Face-to-Face	Lecturing with active participation	Chapter 2
	K1, K2, K3, S3 S5 C1	Create A model	Asynchronous	Asynchronous	Chapter 2
6	K1, K2, K3, S3,	K3, S3, Deep Learning: Convolutional Neural Networks (CNNs)		Lecturing with active participation	Chapter 3
	K1, K2, K3, S3 S5	Upload a Model to HF	Asynchronous	Asynchronous	Chapter 3
7	K1, K2, K3, S3,S4 S5	Deep Learning: Recurrent Neural Networks (RNNs) Transfer learning	Face-to-Face	Lecturing with active participation	Chapter 3
	K1, K2, K3, S3,S4 S5 C1, C2	One shot result for a Task	Asynchronous	Asynchronous	Chapter 3
		Midterm Exams			
8	K1, K2, K3, S3,S4 S5	Transformers and Language Models: Transformer architecture	Face-to-Face	Lecturing with active participation	Chapter 3
0	K1, K2, K3, S3,S4 S5, C1, C2	multi shot result for a Task	Asynchronous	Asynchronous	Chapter 3

Issue Date: 20/10/2023

9	K1, K2, K3,S1, S2.	Transformers and Language Models: Attention mechanisms	nsformers andiguage Models:Face-to-Faceention mechanismsFace-to-Face		Chapter 3			
	K1, K2, K3, C3, S1, S2.	Prompt Engineering	Asynchronous	Asynchronous	Chapter 3			
10	K1, K2, K3, S3 S5	Transformers and Language Models: Fine-tuning language models for specific tasks	Face-to-Face	Lecturing with active participation	Chapter 3			
	K1, K2, K3, S3 S5 C1, C2	Fine Tune using Qlora 1	Asynchronous	Asynchronous	Chapter 3			
11	K1, K2, K3, S1 S2 K1, K2, K3, S1 S2 Fine-tuning language models for specific tasks		Face-to-Face	Lecturing with active participation	Chapter 3			
	K1, K2, K3, S1 S2	Fine Tune using Qlora 2	Asynchronous	Asynchronous	Chapter 3			
12	K1, K2, K3, S1 S2	Transformers and Language Models: GPT (Generative Pre- trained Transformer) models Applications: Computer vision applications	Face-to-Face	Lecturing with active participation	Chapter 4			
	K1, K2, K3, S1 S2	Models Comparisons	Asynchronous	Asynchronous	Chapter 4			
13	\$3, \$4 \$5 C1, C2	Presentation	Face-to-Face	Lecturing with active participation				
	\$3, \$4 \$5 C1, C2	Presentation	Asynchronous					
	Final Exams							

*Teaching procedures: (Face-to-Face, synchronous, asynchronous). *** Reference: (Pages of the book, recorded lecture, video....) ** Teaching methods: (Lecture, video....).

Eighth: Assessment Methods

Methods	Online Learning	Blended Learning	Face-To- Face	Specific Course Output to be assessed. **If any CILO will not be assessed in the course, mark NA.											
		0	Learning	K1	К2	К3	S1	S2	S 3	S 4	S5	S5 C1 C2			
First Exam															
Second Exam															
Mid-term Exam			30	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Participation			10				\checkmark								
Asynchronous Activities															
Quizzes															
Assignments			20				\checkmark								
Group presentation															
Final Exam			40	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Total out of 100			100												

Ninth: Course Policies

- All course policies are applied to all teaching patterns (online, blended, and face-to-face Learning) as follows:
 - a. Punctuality.
 - b. Participation and interaction.
 - c. Attendance and exams.
- Academic integrity: (cheating and plagiarism are prohibited).

Approval	Name	Date	Signature
Head of Department			
Faculty Dean			

