Faculty: Faculty of Science

Department: Physics

Program: M. Sc. Program

Semester: First semester

Academic year: 2024/2025

Course Plan

First: Course Information

Course Name	Advanced Nuclear Physics			Course NO: 0302781				
Credit Hours	3 hours	Theoretical 3		Practical	0			
Level in JNQF	9							
Prerequisite:	SectionNumber:1 Lecture Time:							
Type Of Course:	 Obligatory Faculty Requirement Obligatory University Requirement Obligatory University Requirement Faculty Requirement Course Elective Specialty Requirement Obligatory Specialization requirement 							
Type Of Learning :	 Face-to-Face Learning Blended Learning(2 Face-to-Face + 1Asynchronous) Online Learning (2 Synchronous+1 Asynchronous) 							

Second: Instructor's Information

Course coordinator:								
Name: :	Office Number:	Email:						
Instructor:								
Name :	Office Number:	Email:						
Office Hours:								

Third: Course Description

Nuclear structure, Nuclear properties, Nuclear forces, Nuclear Models, Ground-state properties of nuclei: the shell model. The magnetic dipole moment of the nucleus, The electric quadrupole moment

of the nucleus, Electron scattering by the nuclear charge distribution, Fermi gas model, Radiation activity: Radioactive decay, Alpha decay, Beta Decay, Fermi theory, The reaction of the radiation of the with matter(alpha, Beta, Gama), Nuclear energy and the stability of nuclear, Fusion and Fission reactions..

Fourth: Course Aims

- Introduce the general properties of nucleus and the nuclear force to the students .
- To apply nuclear structure to find properties of a nucleus.
- Enable students to interpret nuclear structure in terms of the underlying nuclear force.
- Introduce students to scattering problem and results having led to nuclear models.
- Introduce students to three nuclear models: Shell Model, Vibrational and Rotational Models.
- Introduce students to stable and unstable nuclei, radioactivity and alpha decay.

Designated Book:	, Concepts of Nuclear Physics,	1st Edition			
Author: B. L. Cohen	Print: Mc-Graw Hill, New York	Year: 1971			
Additional Sources: Website:	 Nuclear Physics in a Nutshell, C. A. Bertulani, Princeton University Pro 2007 Introductory Nuclear Physics, K.S. Krane, John Wiley and Sons, 1988. (Excellent for revising the Undergraduate material). Nuclear Structure from a simple Perspective, R. F. Casten, 2nd edition, Oxford Science, 2000. Introductory Nuclear Physics, P. Hodgson, E. Gadioli and E. Gadioli-Erb Clarendon Press, Oxford, 1997. 				
Teaching Type:	Classroom 🗆 Laboratory 🗆 Workshop 💻 MS Te	eams Moodle			

Fifth: Learning Source

Sixth: Learning Outcomes

Level descriptor according to (JNQF)	CILOs Code	Course learning output	Associated Program Outcome Code	Assessment method** Choose at least two methods	Scores out of 100 State the total score identified for each CILO	Minimum acceptable Score/percentage (%) The percentage should not be less than 50% ***
Knowledge	**K1	To memorize the advanced knowledge of nucleus properties, nuclear binding energy, nuclear models, nuclear reactions, scattering, and nuclear decay. To understand decay schemes and branching ratios. State the basic properties of the nuclear force	*PK1	Quiz Assignment Mid Exam	10 10	10%
	K2 Define spin, parity, ground state section, differential cross section K2 reaction, angular momentum, dip and nuclear decay.		PK2	Quiz Assignment Mid Exam Final	10	10%
	K3	Write down Schrödinger equation for scattering problems, Shel model, and other nuclear problems.	PK3	Quiz Assignment Mid Exam Final	10	10%
Skills	***S1	Translate a physical description of a advanced- level nuclear problems into the mathematical equation necessary to solve it. Applying quantum techniques to solve known nuclear problems	PS1	Quiz Assignment Mid Exam Final	20	20%

		Investigate the basic properties of the nuclear force by studying the simplest nuclear system: deuteron. Determine the spin and parity of different nuclei in their ground state.				
	S2	Study the kinematics of nuclear reactions in general and that of alpha emission.) Study the systematics of alpha decay and the quantum theory of alpha decay (The Gamow's theory).	PS2	Assignment	10	10%
	S3	Recognize when approximations are useful, and to use them effectively (e.g.magnetic dipole moment, scattering, and decay)	PS3	Quiz Assignment Mid Exam Final	10	10%
	S4	Recognize symmetries and be able to take advantage of them in order to choose the appropriate method for solving a problem in Shell model decay ad scattering models . Logical thinking and reasoning (Identifying Relevant Information, Formulating a Clear Strategy, Applying Fundamental Principles, Critical Evaluation of Solutions	PS4	Quiz Assignment Mid Exam Final	10	10%
Competencies	****C1	Self-evaluation and responsibility for self- learning.	PC1	Assignments	10	10%
	C2	Work effectively and taking responsibility for the team work.	PC2	Assignments	10	10%

Seventh: Course Structure

Lecture Date	Covered (ILOs)	Topics	Teaching Procedures*	Teaching Methods***	References*
Week1	K1	Some Introductory Terminology, Nuclear Properties, Units and Dimensions,	Face- to-face	Lecturing, Whiteboard, DataShow	Text 3-8
Week2	K1,K5	Quantum Behavior, Problems in One Dimension, Theory of Angular Momentum, The Nuclear Radius			Text10-25
Week3	K1	Semiprimal mass formula, Nuclear Binding Energy,	Face- to-face	Lecturing, Whiteboard, DataShow	Text 44-50
Week4	K1,S1	Nuclear Angular Momentum and Parity, Nuclear Electromagnetic Moments.	Asynchronous	Videos, Homework Self reading Quizz	Text 50-59
Week5	K1,	The Deuteron	Face- to-face	Lecturing, Whiteboard, DataShow	Text 60-65
Week6	K1	The Shell Model	Asynchronous	Videos, Homework Self reading Quizz	Text 65-70
Week7	K1	Nucleon-Nucleon Scattering Proton-Proton and Neutron-Neutron Interactions, Properties of the Nuclear Force.	Face- to-face	Lecturing, Whiteboard, DataShow	Text 65-70
Week8	K5,S1	The Structure of Complex Nuclei: Spherical Even-Even Nuclei, Odd-A Spherical Nuclei , Spherical Odd-Odd Nuclei	Asynchronous	Videos, Homework Self reading Quizz	Text 70-72
Week9	K1,K3,S1	The Radioactive Decay Law, Production and Decay of Radioactivity	Face- to-face	Lecturing, Whiteboard, DataShow	Text 72-75
Week10	K2,K4	Growth of Daughter Activities Production and Decay of Radioactivity	Asynchronous	Videos Homework Self reading	Text 75-77
Week11	K2,K4	Beta Decay	Face- to-face	Lecturing, Whiteboard, DataShow	Text 80-85
Week12		Gamma Decay	Asynchronous	Videos Homework Self reading	

				Quizz	
Week13	K1,K2,	Alpha Decay	Face- to-face	Lecturing, Whiteboard,	Text 90-96
	Γ 1, Γ 2,		Face- to-face	DataShow	
Week14		Nuclear Reactions, Types of Reactions and Conservation Laws		Videos	Text 86-90
	K1,K2,	Compound nuclear reactions	Agunahaanaya	Homework	
	м 1, м 2,		Asynchronous	Self reading	
				Quizz	
Week15 K1,K3		Nuclear Reactions, Types of Reactions and Conservation Laws: Direct	Face- to-face	Lecturing, Whiteboard,	Text 96-100
		nuclear reactions	race- to-face	DataShow	

* Learning procedures: (Face-to-Face, synchronous, asynchronous). * * Teaching methods: (Lecture, video....). ** * Reference: (Pages of the book, recorded lecture, video....).

Eighth: Assessment methods

Methods	Fully Electronic	Integrated Teaching	Face to Face	Specific Course Output to be measured *State the score identified for each CILO for each method of assessment out of 100 **If any CILO will not be assessed in the course, mark NA.					out of 100			
Educatio			Teaching	К1	К2	К3	S1	S2	S 3	S 4	C1	C2
Mid-term Exam		30		4	4	4	4	5	5	5		
Final Exam		40		4	4	4	12	5	5	5		
Quizzes		10		2	2	2	0	0	0	0	2	2
Assignments		20		0	0	0	4	0	0	0	8	8
Total out of 100		100		10	10	10	20	10	10	10	10	10

Ninth: Course Polices

- All course policies are applied on all teaching patterns (online, blended, and face-to-face Learning) as follows: a. Punctuality.
 - b. Participation and interaction.
 - c. Attendance and exams.
- Academic integrity: (cheating and plagiarism are prohibited).

Approval.	Name	Date	Signature
Head of Department			
Faculty Dean			

