Faculty: Faculty of Science

Department: Physics

Program: Master Program

Semester: Second semester

Academic year: 2023/2024

Course Plan

First: Course Information

Course Nat	Course Name: Advanced Statistical Mechanics					2741	
Credit Hoi	ırs:	3 hrs	Theoretical	Practical	0		
Prerequis	ite:		Class Number:	Lecture Time:			
Level in JN	QF	PF 9					
Course Nature:	□ Mandatory Faculty Requirement□Optional University Requirement□ Mandatory University Requirement□Ancillary Course☑ Optional Specialty Requirement□Mandatory Specialization requirement					ement requirement	
Type Of Educatin:	□ Face-to-Face Learning □ Blended Learning(2 Face-to-Face + 1Asynchronous) ☑ Online Learning (2 Synchronous+1Asynchronous)						

Second: Instructor's Information

Name: Dr. Riad S. Masharfe	Academic Rank :Assistant professor					
Office Number: 334D	Phone Number:+962-5-3821100 ext.: 1151 Email:rmasharfe@z					
Office Hours:	11:00-12:30 Mon, Wed					

Third: Short Description of the Course

The Statistical Basis of Thermodynamics, The classical ideal gas, Phase space of a classical system, Liouville's theorem and its consequences, The micro canonical ensemble, Physical significance of the various statistical quantities in the canonical ensemble, Alternative expressions for the partition function, The classical systems, Formulation of Quantum Statistics, Ideal Bose Systems, Ideal Fermions systems, The statistics of Para magnetism (Pauli), The statistics of diamagnetism(Landau), The statistical mechanics of reaction systems.

Fourth: Learning Source

Designated Book:	Statistical Mechanics, ISBN 978-0-12- 382188-1	Elsevier				
Author: R. K. Pathria and Paul D. Beale,	edition: 3nd ed.	Year: 2011				
	Mandl, Franz (1971). Statistical physics. Chichester: Wi 56658-6. 2e (1988) Chichester: Wiley ISBN 0-471-91532- 5. Reif, Frederick (1965). Fundamentals of Statistical and 2	ley. ISBN 0-471- 7, ISBN 0-471-91533- Thermal Physics.				
Additional Sources: Website:	McGraw-Hill. <i>ISBN 0-07-051800-9</i> . <i>Sears, Francis W.</i> (1975). Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. Addison Wesley. <i>ISBN 020106894X</i> .					
	<i>Kittel, Charles</i> (1969). Thermal Physics. Chichester: Wiley. <i>ISBN 0-471-49030-X. 2e Kittel, Charles; and Kroemer, Herbert (1980) New York: W.H. Freeman ISBN 0-7167-1088-9</i>					
	W. Griener, L. Niese, and H. Stocker, Thermodynamics Mechanics, 1995	s and Statistical				
Teaching Type:	Classroom 🗆 Laboratory 🗆 Workshop 💻 M	S Teams Moodle				

Fifth: course objectives

- 1. Provide students with a comprehensive introduction to the principles and concepts of statistical mechanics, including ensembles, probability distributions, and partition functions.
- 2. Enable students to understand how statistical mechanics principles relate to thermodynamic systems, including the derivation and interpretation of thermodynamic quantities from statistical ensembles.
- 3. Introduce students to advanced topics in statistical mechanics such as phase transitions, critical phenomena, and the behavior of interacting systems.
- 4. Familiarize students with the mathematical techniques commonly used in statistical mechanics, including probability theory, calculus, and linear algebra.
- 5. Teach students how to apply statistical methods to analyze physical systems with large numbers of particles, including gases, liquids, and solids.
- 6. Introduce students to quantum statistical mechanics and its applications to systems of quantum particles, including Fermi-Dirac and Bose-Einstein statistics.
- 7. Cover classical statistical mechanics, including the Boltzmann distribution, the canonical ensemble, and the microcanonical ensemble.
- 8. Develop students' problem-solving skills by providing them with opportunities to apply statistical mechanics concepts to solve theoretical and practical problems in physics.
- 9. Foster critical thinking skills by encouraging students to critically analyze and evaluate scientific data, models, and theories within the context of statistical mechanics.
- 10. Develop students' research and communication skills by requiring them to conduct independent research projects and present their findings through oral presentations and written reports.

issue: 03

Issue Date: 20/10/2023

- 11. Emphasize the integration of statistical mechanics with other core areas of physics, such as quantum mechanics, classical mechanics, and thermodynamics, to demonstrate its broad applicability and importance.
- 12. Prepare students for advanced study and research in physics or related fields by providing them with a solid foundation in statistical mechanics and its applications.

Level descriptor according to (JNQF)	CILOs Code	<i>CILOs</i> If any CILO will not be assessed in the course, mark NA.	Associated PILOs Code Choose one PILO for each CILO*	Assessment method** Choose at least two methods	Scores out of 100 State the total score identified for each CILO	Minimum acceptable Score/percentage (%) The percentage should not be less than 50% ***
Knowledge	K1	The systematic exploration of foundational physics principles that govern the behavior of systems at the microscopic level. This includes concepts such as the Boltzmann distribution, ideal gas law, entropy, and phase transitions, all of which arise from the statistical behavior of particles.	P. K1	HOMEWORK/QUIZZ/FINAL EXAM	26	13 (50%)
	К2	Highlighting the relationships between statistical mechanics and fundamental physics, students gain deeper understanding of the natural world and its underlying principles.	P. K2	HOMEWORK/QUIZZ/FINAL EXAM	14	7 (50%)
	К3	To execute substantial independent research, showcasing specialized physics knowledge in statistical mechanics through theoretical analysis, numerical simulations, and experimental investigations.	P.K3	HOMEWORK/QUIZZ/FINAL EXAM	12	6(50%)
Skills	S1	Proficiency in computational methods for modeling and simulating statistical systems.	P. S1	HOMEWORK/QUIZZ/FINAL EXAM	4	2 (50%)

Sixth : Learning Outcomes

	S2	Applying quantum mechanics principles extends to many-particle systems. Additionally, discussing statistical models in nuclear physics and solid-state phenomena illustrates real-world applications,	P. S2	HOMEWORK/QUIZZ/FINAL EXAM	8	4 (50%)
	S 3	Apply statistical mechanics principles to diverse physical systems, including classical, quantum, and solid-state phenomena.	P.S2	HOMEWORK/QUIZZ/FINAL EXAM	10	5(50%)
	S 4	Investigate the integration of research tools and results within subfields of statistical mechanics	P.S3	HOMEWORK/QUIZZ/FINAL EXAM	10	5(50%)
	S5	Proficiently design, create, and develop solutions to complex physics problems within the framework of statistical mechanics	P.S5	HOMEWORK/QUIZZ/FINAL EXAM	12	6(50%)
	C1	Work effectively within work teams	P. C1	FINAL EXAM	2	1(50%)
Competencies	C2	Logical problem-solving and reasoning (Identifying, strategizing, applying, evaluating, adapting, inferring, communicating	P. C3	FINAL EXAM	2	1(50%)

Sixth: Course Structure

Lecture	Teaching	Topics	Teaching	Teaching Methods***	References***	
Date	Outcome	Toploo	Procedures*			
	K1/K2/S5/ C1	The Statistical Basis of Thermodynamics (The macroscopic and the microscopic states / Contact between statistics and thermodynamics: physical significance of the number $\Omega(N, V, E)$.	ELCTRONIC	LECTURE+PRESENTATION	1-10	
	K1/K3/S1	Further contact between statistics and thermodynamics /The classical ideal gas 9 The entropy of mixing and the Gibbs paradox	ASYNCHRONOUS	HOMEWORK/QUIZZ/MINI LECT.	12-22	
	K1/K2/S1/ S3	Elements of Ensemble Theory (Phase space of a	ELCTRONIC	LECTURE+PRESENTATION	25-37	

Issue Date: 20/10/2023

		classical system / Liouville's			
		theorem and its consequences			
		The microcanonical ensemble/			
		Examples /Quantum states			
		and the phase space)			
	K1/K2/S1/	The Canonical Ensemble			
	S5	(Equilibrium between a			
	~	system and a heat reservoir /			
		A system in the cononical			
		A system in the canonical			
		ensemble / Physical	ASYNCHRONOUS	LECT	39-58
		significance of the various		LLC1.	
		statistical qualities			
		in the canonical ensemble /			
		/ Alternative expressions for			
	X/X2/01/0	the partition function			
	K/K2/S1/S	/ The classical systems /			
	2/83/CI	Energy fluctuations in the			
		canonical ensemble:			
		correspondence with the			
		microcanonical ensemble /			
		/ I wo theorems — the			
		"equipartition" and the	ELCTRONIC	LECTURE+PRESENTATION	59-77
		A system of narmonic			
		oscillators. The statistics of			
		maramagnetism /			
		I hermodynamics of magnetic			
		systems:			
	V/V2/C1/C	The Grand Gamming			
	K/KZ/S1/S	Ine Grand Canonical			
	2/35/01	hetween a system and a			
		perticle anong			
		particle-effergy	ASYNCHRONOUS	HOMEWORK/QUIZZ/MINI	91-103
		grand canonical angamble/		LEC I.	
		Dhysical significance of the			
		various statistical quantities /			
	V1/V2/S1/	Density and energy			
	S2/S2/S4/	fluctuations in the grand			
	C1	canonical			
		ensemble: correspondence			
		with other ensembles /	FI CTRONIC	I ECTURE_PRESENTATION	103-111
		Thermodynamic phase		ELCI ORETI RESENTATION	105-111
		diagrams / Phase equilibrium			
		and the Clausius_Clanevron			
		equation			
	K1/K2/K3	Formulation of Ouentum			
	/\$1/\$2/\$3/	Statistics (Quantum-			
	S4/C1	mechanical ensemble theory		HOMEWORK/OUTZ/MINI	
	5 // C1	the density matrix / Statistics	ASYNCHRONOUS	LECT.	115-127
		of the various ensembles /			
		Contents / Examples /			
	K1/K3/S1/				
	S2/S3/S5/	Systems composed of	ELCTRONIC	LECTURE+PRESENTATION	127-139
	C1	indistinguishable particles /			
L	1	ı	Γ	ſ	[

Issue Date: 20/10/2023

	The density matrix and the partition function of a			
K1/K2/S1/ S2/S3/S4/ C2	The Theory of Simple Gases (An ideal gas in a quantum- mechanical microcanonical ensemble / An ideal gas in other quantum- mechanical ensembles / Statistics of the occupation numbers	ASYNCHRONOUS	HOMEWORK/QUIZZ/MINI LECT.	141-152
K2/K3/S1/ S2/S3/S5/ C1	/ Kinetic considerations / Gaseous systems composed of molecules with internal motion /Chemical equilibrium	ELCTRONIC	LECTURE+PRESENTATION	152-178
K2/K3/S1/ S2/S3/S5/ C1	Ideal Bose Systems Thermodynamic behavior of an ideal Bose gas/ Bose– Einstein condensation in ultracold atomic gases /	ASYNCHRONOUS	HOMEWORK/QUIZZ/MINI LECT.	179-191
K1/K2/K3 /S1/S2/S3/ S4/C1	Thermodynamics of the blackbody radiation/The field of sound waves/ Inertial density of the sound field / Elementary excitations in liquid helium II	ELCTRONIC	LECTURE+PRESENTATION	191-215
K1/K2/K3 /S1/S2/S3/ S4/C1	Ideal Bose Systems (Thermodynamic behavior of an ideal Bose gas/ Bose– Einstein condensation in ultracold atomic gases /Thermodynamics of the blackbody radiation/	ASYNCHRONOUS	HOMEWORK/QUIZZ/MINI LECT.	231-247
K1/K2/K3 /S1/S2/S3/ S4/C1	The field of sound waves/ Inertial density of the sound field/. Elementary excitations in liquid helium II	ELCTRONIC	LECTURE	247-264

Education procedures: (Direct, synchronous, asynchronous). * * Teaching methods: Lecture, video.....). * * Reference: Pages of the book, recorded lecture, video....).(

Seventh: Assessment methods

Methods	Fully Electron ic Educati on	Integrate d Teaching	Face to face	Specific Course Output to be measured *State the score identified for each CILO for each method of assessment out of 100 **If any CILO will not be assessed in the course, mark NA.									
				K1 K2 K3 S1 S2 S3 S4 S5 C1 C2									
First exam													

Second exam												
Final Exam	40		6	4	2	4	4	4	4	8	2	2
Quizzes	30		10	5	5	N.A	2	3	3	2	N.A	N.A
Assignment	30		10	5	5	N.A	2	3	3	2	N.A	N.A
Total out of 100	100		26	14	12	4	8	10	10	12	2	2

* Refer to document (CC-2023-03)

Eighth: Course Polices

- Meeting the deadline for the lecture.
- Commitment to interaction and participation.
- Interactive lectures will be given through a platform (MS Teams).
- Duties and tests will be given through a platform (Moodle).
- Commitment to the right appearance in front of the camera with the proper background.
- University regulations for attendance and absence from lectures and examinations are in force.
- Academic Integrity: Fraud or moral impersonation are unacceptable and are punishable according to university regulations and instructions.

Approval	Name	Date	Signature
Head of Department	Dr. Riad Masharfe		
Faculty Dean	Dr. Aliaa Burqan		

