Faculty: Faculty of Science

Department: Physics department

Program: M. Sc. of Physics

Academic year: 2023/2024

Semester: Second

Course Plan

First: Course Information

<i>Course No</i> . 0302721	Course Title: Advanced Electrodynamics 1	Credit Hours: 3			
Prerequisite: None	Section No.: 1	Lecture Time:			
Type Of Course:	Mandatory Faculty Requirement Optional University Requirement Mandatory University Requirement Faculty Requirement Ancillary Course Optional Specialty Requirement Mandatory Specialization requirement				
Type of Learning:	be of Learning:				

Second: Instructor's Information

Name: Dr. Mohammed Hassen	Academic R	Academic Rank: Assistant Professor				
Office Number: 318D		Phone Number:10	Phone Number:1095 Email: mseilee		k@zu.edu.jo	
Office Hours:	Sunday 2:00-3:00	Monday 11:00-12:00	Tuesday 2:00-3:0	•	Thursday 2:00-3:00	

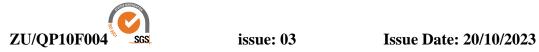
Third: Course Description

In this course, students will cover topics such as Introduction for electrostatic, Boundary-value problems in electrostatics, Multi-Poles, Magneto statics, Maxwell's equations.

Fourth: Course Objectives

Upon successful completion, students will have the knowledge and skills to:

- 1. Have an advanced understanding of Maxwell's equations and have gained practical experience in solving Maxwell's equations using analytic and numerical techniques.
- 2. Understand the wave solutions of electromagnetism and their relevance to optics including propagation of electromagnetic waves in materials, birefringence, boundary conditions at material interfaces and reflection and transmission of waves at interfaces, polarization, spatial phase, coherence, Fourier theory and spatial filtering, Maxwell stress tensor and mechanical forces exerted by electromagnetic waves, radiation from time dependent charge distributions.
- 3. Covariant (relativistic formulation) of electrodynamics including four vectors, the electromagnetic field tensor, Lagrangians and fields, gauge transformations and symmetries.
- 4. Apply the covariant formulation of electricity and magnetism to bremsstrahlung and related effects
- 5. Explain the purpose and advantages of writing physical laws in tensor form.
- 6. Demonstrate effective oral and written communication skills and be able to research and explain scientific concepts.


Fifth: Learn	ing Source				
Main Reference:	Classical electrodynamics, 3rd edition, J. D. Jackson, Wiley, ISBN-10: 8126510943. Publication Year:1998				
	1. Modern Electrodynamics, Andrew Zangwill. Cambridge University Press, ISBN-97885218969791. Year: 20122. Modern Electrodynamics, A. Zangwill, Cambridge University Press, ISBN- 				
Additional Sources & Websites:	1. <u>https://www.damtp.cam.ac.uk/user/tong/em.html</u> 2. <u>https://www.phys.ksu.edu/personal/wysin/ED-I/index.html</u> 3. <u>https://www.wtamu.edu/~cbaird/courses.html</u>				
Teaching Type:	Classroom Laboratory 🗆 Workshop 🖿 MS Teams 🖿 Moodle				

Sixth: Learning Outcomes

Number	Course learning output	Associated PILOs Code Choose one PILO for each CILO*	Assessment method** Choose at least two methods	Scores out of 100 State the total score identified for each CILO	Minimum acceptable Score/percentage (%) The percentage should not be less than 50% ***		
	Knowledge						

K1	To understand the principles of electrostatic, Boundary-value problems in electrostatics, Multi- Poles, Magneto statics, Maxwell's equations Demonstrate the basic knowledge	PK1	Homework Quiz Final exam	10	5(50%)			
K2	about the Coulomb's law, electric field, Gauss's law, differential form of Gauss's law, scalar potential, surface distributions of charges and dipoles, Poisson's and Laplace's equations, Green's theorem, Uniqueness theorem and Green's function and electrostatic potential energy.	PK2	Homework Quiz Final exam	10	5(50%)			
К3	To understand the fundamental method of images, point charge and a ground conducting sphere, point charge and a charged, insulated, conducting sphere, at fixed potential and in a uniform field, method of inversion, Green's function for a sphere, conducting sphere with hemispheres at different potentials, orthogonal function and expansions, and separation of variables in rectangular coordinates.	РК3	Homework Quiz Final exam	12	6(50%)			
K4	To understand Laplace's equation in spherical coordinates, Legendre polynomials, boundary-value problems with azimuthal symmetry, spherical harmonics, addition theorem for spherical harmonics, cylindrical coordinates, Bessel functions, boundary-value problems in cylindrical coordinates, expression of Green's function in spherical coordinates, use of spherical Green's function expansion, expansion of Green's function in cylindrical coordinates, eigenfunction expression for Green's functions, and mixed boundary conditions, charged conducting disc.	PK4	Homework Quiz Final exam	12	6(50%)			
	Skills							
S1	Applying a mathematical concept such as calculus, differential equations, linear algebra, and complex analysis. These	PS1	Homework Quiz Final exam	16	8(50%)			

	mathematical tools are essential for							
	understanding the theoretical framework of electrodynamic							
S2	Creating links between the principles and ideas of multipoles, electrostatic of macroscopic media, dielectric.	PS2	Homework Quiz Final exam	12	6(50%)			
S3	Build a strong background electrodynamic for delving into advanced fields of study like quantum, spectroscopy, nanotechnology, photonics, and among others.	PS3	Homework Quiz Final exam	12	6(50%)			
S4	Develop theoretical models to describe the time-varying fields, Maxwell's equations and conservation laws. This may involve solving the Time-Varying Fields for Gauge transformation and Green's function problem, Kirchhoff's integral representation.	PS4	Homework Quiz Final exam	16	8(50%)			
	Competences							
C1	Students should accept full responsibility for their own learning.	PC1	Homework Take home Exam					
C2	Working a knew problems and identify the suitable way to solve the problem.	PC2	Homework Take home Exam					

*Refer to document () and page 2 in document ()

**** Refer to document** ()

**80% of the students must achieve the minimum acceptable percentage or higher for each CILO

Seventh: Course Structure

Lecture Date	Teaching Outcomes (ILOs)	Topics	Teaching Procedures*	Teaching Methods***	References***
03/03/2024	PK1 PK2 PK4 PS2 PC1	Introduction: Boundary-value problems in electrostatics, Multi-Poles,	Synchronous	Online Lecture on Microsoft Teams	Text book Chapter 1

10/03/2024	PK1 PK2 PS1 PS2 PS4 PC1 PC2	Magneto statics, Maxwell's equations	Asynchronous	Students' Activities on Moodle	Text book Chapter 1
17/03/2024	PK1 PK2 PS2 PS4 PC1 PC2	the Coulomb's law, electric field, Gauss's law, differential form of Gauss's law, scalar potential, surface distributions of charges and dipoles.	Synchronous	Online Lecture on Microsoft Teams	Text book Chapter 1
24/03/2024	PK1 PK2 PS2 PC1 PC2	method of images, point charge and a ground conducting sphere, point charge and a charged, insulated, conducting sphere, at fixed potential and in a uniform field, method of inversion,	Asynchronous Students' Activities o Moodle		Text book Chapter 2
31/03/2024	PK1 PK2 S1 PS2 PC1 PC2	Green's function for a sphere, conducting sphere with hemispheres at different potentials, orthogonal function and expansions, and separation of variables in rectangular coordinates	Synchronous	Online Lecture on Microsoft Teams	Text book Chapter 2
07/04/2024	PK1 PK2 PS1 PS2 PS4 PC1 PC2	Laplace's equation in spherical coordinates, Legendre polynomials, boundary-value problems with azimuthal symmetry, spherical harmonics, addition theorem for spherical harmonics, cylindrical coordinates, Bessel functions,.	Asynchronous	Students' Activities on Moodle	Text book Chapter 3
14/04/2024	PK1 PK2 PS2 PS4 PC1 PC2	boundary-value problems in cylindrical coordinates, expression of Green's function in spherical coordinates, use of spherical Green's function expansion, expansion of Green's function in cylindrical coordinates, eigenfunction expression for Green's functions, and mixed boundary conditions, charged conducting disc	Synchronous	Online Lecture on Microsoft Teams	Text book Chapter 3

21/04/2024	PK1 PK2 PS1 PS2	Multipole expansion, multipole expression of the	Asynchronous		
	PS4 C1	energy of a charge	risynemonous		
	PC2	distribution in an external		Students'	Text book
	rC2			Activities on	Chapter 4
		field, macroscopic		Moodle	Chapter 4
		electrostatic, simple			
		dielectric and boundary conditions.			
28/04/2024	PK1 PK2		Camahaaaaaaa		
28/04/2024	PK1 PK2 PK4 PS2	Boundary-value problem	Synchronous		
	PK4 PS2 PC1 PC2	with dielectrics, molecular		Online	
	PCT PC2	polarizability and electric		Lecture on	Text book
		susceptibility, models for		Microsoft	Chapter 4
		molecular polarizability		Teams	Chapter 4
		and electrostatic energy in		realits	
		dielectric media			
05/05/2024	PK1 PK2	Introduction and definitions			
	PK4 PS2	of magnetostatics, Biot and	Asynchronous		
	PS4 PC1	Savart law, differential	5		
		equations of magnetostatics,			
		Ampere's law, vector		Students'	Text book
		potential, magnetic induction		Activities on	Chapter 5
		of a circular loop of energy,		Moodle	
		localized current			
		distribution, magnetic			
		moment			
12/05/2024	PK1 PK2	Force and torque on	Synchronous		
	PS2 PC1	localized currents in an			
		external field, macroscopic		- H	
		equations, boundary		Online	T 1 1
		conditions, uniformly		Lecture on	Text book
		magnetized sphere,		Microsoft	Chapter 5
		magnetized sphere in an		Teams	
		external field, permanent			
		magnets, magnetic shielding			
19/05/2024	PK1 PK2	Faraday's law of induction,			
	PS2 PC1	energy in the magnetic field,	Asynchronous		
		Maxwell's displacement	-	Students'	T
		current, Maxwell' equation,		Activities on	Text book
		vector and scalar potentials,		Moodle	Chapter 6
		wave equations, gauge			
		transformations.			
26/05/2024	PK1 PK2	Green's function for the	Synchronous		
	PS2 PC1	time-dependent wave	-	Online	
		equation, initial-value		Online	Taxt bool
		problem, Kirchoff's integral		Lecture on	Text book
		representation, poynting's		Microsoft	Chapter 6
		theorem, conservation laws,		Teams	
					1
		macroscopic equations.			

* Learning procedures: (Face-to-Face, synchronous, a synchronous). * * Teaching methods: (Lecture, video....). ** * Reference: (Pages of the book, recorded lecture, video....).

Methods	Fully Electronic Education	Integrated Teaching	Integrated Direct *State the score identif					Trse Output to be measured fied for each CILO for each method of sessment out of 100 t be assessed in the course, mark NA.			
			K1 K2 K3 K4 S						S2	S 3	S4
Quiz (short quizzes, seminar, projects,)	60			6	6	7	7	6	8	2	4
Final Exam	40			4	4	5	5	10	4	10	12
Total out of 100	100			10	10	12	12	16	12	12	16

Eighth: Assessment methods

Ninth: Course Policies

- Meeting the deadline for the lecture.
- Commitment to interaction and participation.
- Interactive lectures will be given through a platform (MS Teams).
- Duties and tests will be given through a platform (Moodle).
- Commitment to the right appearance in front of the camera with the proper background.
- University regulations for attendance and absence from lectures and examinations are in force.
- Academic Integrity: Fraud or moral impersonation are unacceptable and are punishable according to university regulations and instructions.

Approved by:	Name	Date	Signature
Head of Department	Dr. Riad Masharfe		
Faculty Dean	Dr. Aliaa Burqan		

