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ABSTRACT 

Nose-to-Brain drug delivery can bypass blood-brain-barrier though the 

olfactory region using different devices and dosage forms. In this work we 

aim to fabricate and characterize a novel dosage form (Nasal patch) 

containing Rivastigmine tartrate. Analysis method for rivastigmine tartrate 

was optimized and validated. Four nasal patches were fabricated using 

gelatin/HPMC matrix in a different ratios and grades. The fabricated nasal 

patches were characterized in terms of physical appearance, surface pH, 

diameter and length, mechanical properties, and mucoadhesive behavior. 

The content uniformity, release profile, permeation of rivastigmine tartrate 

were also investigated. The release profiles for all nasal patches were fitted 

to kinetics model. Finally, the physical stability of the dosage form and the 

rivastigmine tartrate were also investigated. Formula F2 appeared to be a 
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promising formula, since it possesses the best sustained release profile with 

the best adhesive behavior and an acceptable elasticity and appearance. 

  

 

Keywords: Nasal drug delivery, Nose-To-Brain, Rivastigmine, Nasal patch, 

Gelatin, HPMC, HPLC, method validation.  
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Chapter (1) Introduction 

1.1. Drug delivery to the central nervous system (CNS) 

Delivery of drugs to the brain remains a challenge in the development of 

valuable agents, mainly due to the nature of the blood brain barrier (BBB) 

which is a highly selective barrier in the human body (Wang and Wu, 2017). 

This may justify why CNS diseases -as Alzheimer's disease- are hardly 

intervened by a non-invasive method that requires passing through BBB 

(Chen, Li and Gao, 2019; Saeedi et al., 2019). 

The main route of brain drug delivery is the invasive routes that offers direct 

delivery system. Invasive methods, such as intrathecal, intracerebral, 

intracranial and direct injection to the brain, based on the transient 

modulation of blood-brain barrier, have many unfavorable side effects such 

as pain with a high incidence of neurotoxicity, hemorrhage, CNS infection, 

increasing in intracranial pressure, leaving an injury with glial scars (Emborg 

and Kordower, 2000). Moreover  these methods show a slow rate of drug 

distribution within the cerebrospinal fluid (CSF) and require specialized 

trained persons with professional techniques, leads to be very limited for 

administration and unsuitable for chronic administration (Emborg and 

Kordower 2000; Pathan et al. 2009; Yu et al. 2017; Meng et al. 2019; Fang 

et al. 2017). However, looking for various alternative non-invasive 
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techniques with systemic drug administration is highly indispensable. These 

methods are summarized in Figure 1.1. 

 

Fig. 1.1. Summery for the invasive and the non-invasive techniques that are used for CNS 

drug delivery (Barnabas 2019; Xie et al. 2019; Yu et al. 2017)  

 

Interestingly, the intranasal delivery was found to be one of the noninvasive 

routes that drugs travel directly along neural pathways to the brain. It offers 

a pathway that bypasses the BBB quickly and efficiently (Gonçalves et al. 

2019; Fine et al. 2020).  
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1.2. Nasal drug delivery 

Previously, nasal drug delivery was mainly used for local and systemic 

therapies due to its high vascularization, high permeation and low enzymatic 

activity. In addition, the direct connection between the brain and nasal cavity 

through olfactory and trigeminal neurons was recognized for better brain 

targeting of drugs (Salazar et al. 2019; Alexander et al. 2020). Distinctively, 

nasal drug delivery is also used for vaccination since lymphoid tissue 

accommodate in the nose which offers a suitable needle-free protection 

(Hussein et al. 2020).  

Traditionally, nasal drug delivery expressed safe, reliable, self-administrated 

and accomplish higher and faster levels of drug absorption, rapid onset of 

action, lower enzyme levels -  compared to gastrointestinal tract and the 

liver- that enhances bioavailability (Akel, Ismail, and Csóka 2020). 

1.3. Nasal Anatomy 

Generally, the nasal cavity consists of three main regions as demonstrated in 

Figure 1.2. Posteriorly, the main two regions which comprise firstly the 

"respiratory" region where turbinates are located as inferior, middle and 

superior regions. The second region is the "olfactory" region located in the 

superior part of the nose as shown in Figure 1.2. The nose is separated into 

two sections by the “nasal septum”. The nasal cavity is characterized by a 

surface is about 180 cm2 , length about 12–14 cm and a pH range of about 
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5.5–6.5,vIn the nasal cavity, the temperature is slightly below the human 

body temperature and ranges between 32 and 35 °C (Salade et al. 2019). The 

nasal passage is about 12–14 cm deep from the nasal vestibule to the 

nasopharynx and has a volume of about 16–19 cm3 for both cavities (V. 

Pandey et al. 2019; Crowe et al. 2018). The olfactory region mucosa, which 

is the mucus-secreting membrane in the upper part of the nose that contains 

cells and neuron that are responsible for initiating olfactory sensation 

(Salazar et al. 2019).  

 The respiratory area has the largest surface area about 130 cm2 which 

represents ~72% of the total surface area of the nose. It is covered with a  

Fig. 1.2.  Sagittal section of the nasal cavity, represents the main 

regions in the nasal cavity with the main parts of the respiratory 

region (Gänger and Schindowski 2018). 
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dense layer of mucus which facilitates the drug absorption for a drug. The 

ciliary mucus layer contains ~ 95% water, ~2% mucin, which is a protein, 

and the rest of ~3% are salt, albumin, lysozymes, lactoferrin, 

immunoglobulins and lipids (Hussein et al. 2020). 

The olfactory region, which is below the cribriform plate of the ethmoid 

bone, is the most interesting and important region for transporting the drug 

to the brain and CSF it has a surface area of about 15 cm2 which occupies 

around 20% of the nasal cavity as shown in Figure 1.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3. The position and the spreading of the olfactory nerve (Davergaon 

and Nagar 2017). 
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1.4. Nose-to-brain drug delivery 

There are two main pathways for any drug to reach the brain through the 

nasal route: Systemic pathway, which passes through respiratory region, and 

neuronal pathway, which pass the olfactory region (Agrawal et al. 2018). 

1.4.1.The systemic pathway  

The drug molecules follow the systemic pathway mainly when it reaches the 

respiratory region, which is an extremely vascular region. Consequently, if 

the drug molecule reaches this region, which will be transported by nasal 

epithelium through paracellular or transcellular route, where the paracellular 

route transports mainly the hydrophilic small molecules through the tight 

junction. In contrast, the transcellular route transports the lipophilic drug 

through either passive diffusion, receptor mediated transport, or endocytosis, 

which then passes though the vascular lamina propria. Molecules will finally 

reach the systemic circulation. This process requires passing the drug to the 

entire body organs and nerves which causes many side effects. Because of  

BBB, only  the lipophilic drug molecule have more chances to reach the brain 

(Dinç, Bayar Muluk, and Vonakis 2020; Sekerdag 2017; Agrawal et al. 2018; 

Salazar et al. 2019). 

1.4.2. The neuronal pathway  

The drug molecules follow the neuronal pathway mainly through the 

olfactory region. The drug interacts majorly with the receptors in olfactory 
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neurons endings and as minor contact with trigeminal neurons. The drug 

moves through neuronal route transportation mechanism by axonal or enter-

axonal pathway. Furthermore, the drug will be able to follow the nerve 

channel that is created by the olfactory ensheathing cells, passing throught 

the cribriform plate and reaching the CSF. The axonal pathway delivers the 

drug directly to the brain but it requires very long onset of action and very 

with high lipophilic charecteristic, The enter-axonal pathway through the 

ensheathing cells allows a rapid onset of action and wider range of molecules 

to be delivered (Djupesland, Messina, and Mahmoud 2014; Agrawal et al. 

2018; Salazar et al. 2019; Sekerdag 2017; Dinç, Bayar Muluk, and Vonakis 

2020). All pathways are described in Figure 1.4. 

 

Fig. 1.4. The pathways for drug molecule that are transported through the olfactory or respiratory 

region to the CNS, 1) enter-axonal transport. 2) axonal transport. 3) transcellular. 4) paracellular.  

(Gänger and Schindowski 2018). 
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One of the main challenging limitations for drug absorption through nasal 

cavity is the mucociliary clearance (Erdő et al. 2018). It has been found that 

drugs was washed off within about 15 min, this making it challenging for 

hydrophilic drugs -such as Rivastigmine- to be efficiently absorbed and 

transported across the nasal membrane. To solve this issue,  mucoadhesive 

system was proven to be the most promising approach that effectively 

increases residence time (Leal, Smyth, and Ghosh 2017). 

1.5. Factors affecting drug transportation   

The mechanism of drug transportation from nose-to brain depends on four 

factors type: 1) The physio-chemical properties of the drug such as the 

molecular weight, solubility, dissolution rate, logP, pka, charge, polarity, 

particle size, and polymorphism. 2) The formulation factor such as the 

excipient, pH, buffer capacity, dosage form and the drug concentration. 3) 

The physiological condition of the patient such as nasal blood flow, 

mucociliary clearance, enzymatic degradation, nasal mucus and the 

deposition of the formulation. 4) The administration factors such as the 

administration process or procedure and the device parameter which 

determine the rejoin where of the drug deposit (Hussein et al. 2020; Sekerdag 

2017). 
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Some drugs, which are used intranasally showed high efficacy in treatment 

of CNS disorders compared to other routes of administration. For instance, 

Risperidone which acts as antipsychotic dopamine antagonist, Venlafaxine 

and Duloxetine used in the treatment of patients with major depressive 

disorder who exhibit emotional and painful physical symptoms, all showed 

improved status conditions. Erythropoietin is used in treatment of 

hypoxic/ischemic cerebral damages, influence a neuroprotective effect. 

Clonazepam which displays muscle relaxant when it was used as   

antionvulsant, sedative and hypnotic drug. The effectiveness of Buspirone 

hydrochloride drug used to treat anxiety caused by smoking cessation or 

alcohol craving was demonstrated  obviously after intranasal administration 

of the drug (Mittal et al. 2014). 

Rivastigmine tartrate (RvT) is a semisynthetic drug from physostigmine 

extracted from (Physostigma venenosum) seed. RvT proved its efficacy for 

treating dementia associated with AD patient as well as Parkinson’s disease 

(PD) for being selectively AChE and BuChE pseudo-irreversible inhibitor. 

It is an alkaloid  with  a half-life about 1.5 hour but it is activity last for about 

10 hours (Dehpour 2021; Eldufani and Blaise 2019). RvT is rapidly absorbed 

orally with 35.5% bioavailability and 40% protein bound, while it reaches it 

is maximum concentration in the CSF after 1.4-3.8 hour, (Dehpour 2021; 

Eldufani and Blaise 2019). 
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RvT is available in the market as an oral dosage of capsules in 4 strengths 

(1.5mg, 3mg, 4.5mg, and 6mg) and as transdermal patch (4.6mg/24hr, 

9.5mg/24hr and 13.3mg/24hr). Oral  administration of RvT  showed many  

incidences of side effects such as  diarrhea, nausea, vomiting, and anorexia, 

dizziness, drowsiness, headache, agitation, cough, myalgia, malaise, fatigue, 

sweating, bradycardia, dyspepsia, (Dehpour 2021). On the other hand, 

transdermal patches increase tolerance of RvT and reduces the 

gastrointestinal side effects. However,  other side effects were provoked  

such as  complete heart block, atrioventricular block, fainting, slow heart rate 

and skin irritation (J.K. ARONSON MA, DPhil, MBChB, FRCP, 

FBPharmacolS 2010). 

RvT is one of the widely used, most-known acetylcholinesterase inhibitor 

(AChI) for AD and Parkinson patient (Eskander et al. 2005). It was proved 

to affect the behavioral and psychological symptoms of dementia including 

apathy, anxiety, depression, delusions, cognition and hallucinations, due to 

its dual inhibition effect of acetyl-and butyrl-cholinesterase (T. H. Chen et 

al. 2017; Değirmenci and Keçeci 2016). 

RvT is a weak base with pKa value about 8.8, reported solubility about 15 

mg.ml-1 at 25 °C, molecular weight: 400.4 and logP about 2, the chemical 

structure shown in Figure 1.5 (ChemicalBook 2021). 
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1.6. Importance of the study 

The aim of our study is to formulate new dosage form as nasal patch for a 

promising noninvasive route of administration (Nose-to-Brain) loaded with 

RvT to reduce side effects by bypassing systemic circulation and enhance 

patient compliance and tolerance. Designing novel mucoadhesive nasal 

patches will help in overcoming limitations of oral or systemic route and 

serve a wider range of patients suffering from brain disorder diseases. 

1.7. Objectives of the study: 

- Formulation of several nasal patches using different grades and 

concentration of hypromellose polymer. 

-  Characterization of the prepared patches by in-vitro strategies. 

- Evaluation of release, permeation properties and content uniformity of each 

formula prepared.  

- Validating an analytical method for nasal patch-loaded with RvT  

- Determination of the stability of the formula and the RvT content in each 

of the prepared patches  

Fig. 1.5: Rivastigmine tartrate structure, rivastigmine 

(above) and tartaric acid (below) (ChemicalBook 2021). 
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Chapter (2) Literature Review 

The intra-nasal pathway shows a promising novel pathway, where molecules 

can reach the CNS by passing the BBB (Onur 2004). Preferably, the nasal 

pathway can be used commonly for local, systemic or CNS drug delivery 

(Erdő et al. 2018). 

2.1. The history of nasal administration  

Before time, Red Indians in North America used the milled leaves of 

Ranunculus acris to relieve headaches and as tobacco for nasal snuffing. 

Indian tribes in Brazil use V-shaped tools known as “Tipi” to blow powdered 

tobacco for enjoyment, relaxation, and to refresh their memories. The 

Chinese used the extract of aloe wood and sandal through the nasal route 

inhalation for treating emesis.  Nowadays , the non-invasive nasal route is 

still a favorable route for drug abuse (Hussein et al. 2020). Chitosan-coated 

nanoemulsion nasal administration elicits a neuroprotective effect against 

LPS-induced memory deficits, neuroinflammation, and oxidative stress in 

Wistar rats (Fachel et al. 2020)  

2.2. Nasal dosage forms  

Several drugs dosage forms are formulated as non-invasive administration 

routes. Non-invasive oral route administration of drugs used to treat brain 

dysfunction was accompanied by disadvantages of bioavailability. For 
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example, Rivastigmine showed only 36% bioavailability and is markedly 

affected by food. It was also affected by serum protein in circulation  (Patel, 

Surti, and Mahajan 2019). 

Different nasal dosage forms have been introduced to achieve the best 

delivery to the systemic circulation or for local nasal delivery of drugs. These 

forms are nasal drops, nasal spray, nasal powder, nanoparticle, nasal in-situ 

gelling cationic nanostructured lipid carriers, nasal in situ gelling polymer, 

nasal microemulsion, nasal nanoemulsion, and thermosensitive hydrogels 

(Menzel et al., 2017; Wavikar, Pai and Vavia, 2017; Tiozzo Fasiolo et al., 

2018; Chatterjee et al., 2019; Pandey et al., 2019; Wang et al., 2019).  

Nasal preparation of testosterone as  NATESTO® was  used as an emulsion 

for treating testosterone deficiency, which shows effectiveness compared to 

oral and transdermal therapy (Ko, Needham and Zia, 1998). Non-invasive 

insulin delivery Miacalcin ® or Minirin ® been introduced in the market as 

a nasal spray and showed positive effects and improving insulin signaling in 

the brain of patients with mild cognitive impairment /AD in all patients 

(Wingrove et al. 2019; Yan-hua Li et al. 2015; Christian 2014) 

Midazolam is commonly used as first-line treatment in patients with acute 

seizures. Intranasal administration leads to rapid Tmax, consistent, and 

improved absorption with fast distribution to the CNS, compared with oral 

https://www.goodrx.com/testosterone


14 
 

 
 

dosing. However, co-administration of moderate or strong CYP3A4 

inhibitors should be avoided (Ren et al. 2021)  

Prepared nasal spray of Diazepam for treatment of seizure clusters provided 

patients and caregivers with more control of their treatment and daily routine 

with  transient and mild discomfort (Penovich et al. 2021).  

Nasal spray of Esketamine when used in a combination with oral 

antidepressant shows better tolerability than oral antidepressant alone with 

potentially efficacious intervention for treatment-resistant depression both 

acute and in longer-term maintenance use (Citrome, DiBernardo, and Singh 

2020; Fantasia 2020). 

Antimigraine   Rizatriptan intranasal spray formulation containing 20% w/w 

ethanol exhibited highest exposure,  faster onset of action, and maintained 

higher concentration than oral tablets or capsules. (Chokshi et al. 2019).  

The effect of Fentanyl pectin nasal spray compared to oral morphine in 

providing rapid analgesia was found to be superior, highly well-tolerated and 

adverse effects were minimal. (Mercadante et al. 2016). 

The effect of nasal dosage form varies according to the solvent ,i:e,  the deep 

eutectic solvents were prepared from malic acid and choline chloride which 

demonstrated lower melting point (−59.1 °C) and higher viscosity (120,000 

cP) compared to hydrogels based on sodium carboxyl methyl cellulose 

(Yang Li et al. 2019). Biocompatible deep eutectic solvents developed as 
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carriers for improving the nasal delivery of insulin were found to maintain 

unchanged conformational structure of insulin characterized by circular 

dichroism. On the other hand, in vitro results showed that insulin in deep 

eutectic solvent dissociated gradually but did not disintegrate immediately 

upon contact with water.  This was able to significantly improve the 

hypoglycemic effect of insulin at different doses, compared with hydrogels 

or other solutions of insulin, In addition, no observation for evident toxicity 

to nasal epithelia after nasal administration to rats for seven consecutive 

days. (Yang Li et al. 2019). 

Development of spray-dried pectin/hypromellose microspheres as efficient 

melatonin carrier for olfactory targeted nasal delivery was investigated 

(Nižić et al. 2020). Result showed that combining pectin with hypromellose 

at 1:3% (w/w) ratio resulted in the formation of microspheres with highest 

potential, highest swelling ability and most prominent mucoadhesive 

properties. In addition, adequate deposition profile at turbinate and olfactory 

was revealed using mono-dose nasal insufflator as nasal powder delivery 

device (Nižić et al. 2020). 

To investigate how the addition of a mucoadhesive agent can influence the 

absorption of drugs into the brain, it was shown that Buspirone 

concentrations in the brain administrated intranasally was about 2.5-times 

higher than intravenous method (Erdő et al. 2018). 
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Loaded domperidine as a mucoadhesive microemulsion increases the 

systemic absorption / bioavailability through nasal delivery around 2 folds. 

In addition, fasten the onset of action and lower the hepatic metabolism 

comparing to the conventional nasal spray (Rathod et al. 2019).  

The combination of nanosuspension and simple addition of sodium 

hyaluronate as a mucoadhesive agent presented a promising platform for the 

nasal delivery of Loratadine (Alshweiat et al. 2020). It was concluded that 

using a mucoadhesive agent is crucial to increase the contact time between 

the formula and nasal mucosa and reducing particle size. This enhanced 

mucoadhesive properties. The evidence from the in vivo studies, showed that 

administration of nasal nanosuspension-based mucoadhesive formulation of 

loratadine have bioavailability 5.54 fold higher than  the oral dose (Alshweiat 

et al. 2020). 

2.3. Nose-to-Brain drug delivery  

Nose to brain delivery detour the BBB with variety of carrier systems. 

Neuro-therapeutic agents such as micro-molecules (micro emulsion of 

donepezil, and polymeric nanoparticles) and macromolecules (proteins, 

hormones, and stem cells) can be delivered via this route to prevent and 

manage different neurological disorders (Patel, Surti, and Mahajan 2019). 

Intranasal drug delivery, a non-invasive technique, has superior advantage 

over other routes since drugs may enter into the blood circulation or directly 
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permeate to the brain, due to its  highly vascularization and highly permeable 

tissues in this area (Graff and Pollack 2005). It also supports the unique 

connections between the brain and external environment provided by the 

anatomical structure of olfactory and trigeminal nerves (Salade et al. 2019; 

Menzel et al. 2017). One of previous studies showed that intranasal insulin 

improves attention, memory, and cognitive function in both AD-type 

dementia and non-AD-type dementia models (Crowe et al. 2018). Another 

study indicated that administration of drug deep into the nasal cavity, led to 

direct transmission of drug such as oxytocin into brain via olfactory pathway 

(Kozlovskaya, Abou-Kaoud and Stepensky, 2014). It was clearly reported 

that olfactory epithelium pathway is faster way of drug transportation, via 

paracellular mechanism into perineural space and transferred directly to the 

brain (Khan et al. 2017). In addition, improvement of  

pharmacokinetic/pharmacodynamics (PK/PD) profile for CNS acting drugs 

was found (J. Chen et al. 2008).     

Facial intradermal injection (FIDI) might be a novel strategy for bypassing 

the BBB via the trigeminal nerve. Intradermal injection into the rat mystacial 

pad, elevated the brain sub-areas and trigeminal Evans Blue concentrations 

(Yu et al. 2017). It was demonstrated that FIDI increased the brain drug 

targeting efficiency, brain direct transport percentage and brain. Moreover, 

trigeminal perineurium, epineurium, perivascular spaces, neurons and 
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Schwann cells were also involved by this  brain targeted delivery (Yu et al. 

2017). 

Beside the formulation aspect, it has been depicted that application of aerosol 

nasal drug requires a special device to allow its deposition to be absorbed in 

the nasal cavity which depends on the nasal mucociliary clearance (Inoue et 

al. 2018; Salade et al. 2019). 

2.4. Rivastigmine as a CNS disorders treatment drug 

Oral Rivastigmine was first approved in the US in 2000, while the 

Rivastigmine transdermal system was approved in 2007 and since then, it 

has been used for patients with mild, moderate, and severe AD. Rivastigmine 

is used as transdermal patch form, showed a unique effect  as a cholinesterase 

inhibitor. 

Rivastigmine is studied in several forms, such as dry powder inhalation 

formulation, capsule, transdermal patches, nasal spray, nasal adhesive 

nanoparticle, nasal solid nanoparticles (Morgan and Soh 2017; Abouhussein 

et al. 2018; Simon et al. 2016; Malaiya et al. 2018; Shah et al. 2015; Articus, 

Hechenbichler, and Bornholdt 2011). 

The efficacy of these forms varies among patients. It was found that 

transdermal patch of Rivastigmine was well tolerated than capsule form (Fuh 

et al. 2017), and have dose-dependent effect. 
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The Rivastigmine was used as nasal spray administration and investigated as 

single dose. The nasal spray of rivastigmine had outstanding absolute 

bioavailability compared to historical values for oral capsule and transdermal 

patch. It had rapid onset of action and a favorable safety and tolerability 

profile (Morgan and Soh 2017). 

Investigation of another intranasal Rivastigmine as liposomes and cell- 

penetrating peptide modified liposomes revealed an improvement of 

Rivastigmine distribution in brain with enhanced pharmacodynamics and 

minimize side effects. (Yang et al. 2013). 

Rivastigmine was also studied in a manner of brain targeting through the 

olfactory region. Investigation showed that the potential of nanostructured 

lipid carriers for nose to brain delivery of Rivastigmine was enhanced by 

incorporating into an in-situ gelling system, increasing retention in nasal 

cavity. Pharmacokinetics showed sustained release of intranasal and 

intravenous-nanostructured lipid carriers compared to rivastigmine solution 

by the same route. It showed significantly higher aria under the curve (AUC) 

and T-half (Wavikar, Pai, and Vavia 2017). Moreover, nasal toxicity studies 

of nanostructured lipid carriers showed no signs of inflammation, 

maintaining the integrity of ciliary epithelial cell, thus confirming safety of 

the formulation for its   
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2.5. Nasal patches  

Literature survey revealed that the known nasal patches studied till now are 

two nasal adhesive patches: for management of nasal impairments and for 

the dry nasal syndrome.  

By the study of Laffleur et al. “The nasal patches containing naphazoline for 

management of nasal impairments”, the study aimed to formulate a solid 

dosage form as decongestant for local intranasal application. Nine 

formulations following the solvent evaporation method and based on gelatin 

and other polymers were manufactured. All patches were characterized 

according to uniformity of weight, thickness, transparency and surface pH, 

tensile strength and elongation at break. Adhesiveness was assessed by tack 

test, and bioadhesive assay on the nasal porcine mucosa. Naphazoline was 

incorporated in the different formulations and investigated for drug release, 

were the most prominent formulas were chosen according to the 

mucoadhesion and controlled drug release for the management of mucosal 

disorders (Laffleur et al. 2018). 

The second nasal patch studied by Laffleur, 2018 as shown in her work 

“Nasal adhesive patches - Approach for topical application for dry nasal 

syndrome”, the study provides nasal adhesive formulations for treatment of 

dry nasal syndrome as a topical application. According to solvent 

evaporation method, mucoadhesive films were prepared consisting of 
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polymers such as gellan and carboxymethyl cellulose, 5 mucoadhesive films 

were evaluated in respect to their physicochemical properties, stability, 

disintegration behavior and tensile strength. Moreover, uptake capacity of 

adhesive films was investigated according to three assays vapor uptake, 

permeability and water uptake. Mucoadhesive assessment was carried out on 

porcine nasal mucosa in terms of adhesion time, wash off resistance and 

spreadability. A variety of humectants such as urea, Aloe vera, allantoin, and 

hyaluronic acid was incorporated in the formulations. All nasal adhesive 

films were convinced with their proficiency of mucoadhesiveness, and 

stability to be suitable in the management of dry nasal syndrome (Laffleur 

2018). 
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Chapter (3) Methods 

3.1. Chemicals  

Rivastigmine Tartrate (API) was obtained from Anhui Puya Biological 

Technology co.,LTD (Shandong, china), tartaric acid obtained from local 

market, HPMC K4M and HPMC K100M was kindly received as a gift 

sample from Ashland Specialties (Belgium, BVBA(, methanol HPLC grade 

and acetonitrile HPLC grade was obtained from Fisher Chimical (Belgium), 

Phosphoric Acid 85%, glycerol and propylene glycol (PG) was obtained 

from local market, silica gel high-purity grade and gelatin from porcine skin 

was obtained from Sigma-Aldrich (Munich, Germany) mucin from poracine 

stomach type 2 Sigma-Aldrich (Shanghai, China), ammonium phosphate 

dibasic obtained from Sigma-Aldrich (Ontario, Canada) di-Sodium 

hydrogen phosphate obtained from AZ Chem for chemicals (Selangor, 

Malaysia,), sodium chloride (NaCl) salt and potassium chloride (KCl) 

obtained from Central Drug House (New Dilhi, India), calcium chloride 

anhydrous obtained from Sigma-Aldrich (Tokyo, Japan), nylon syringe filter 

and PTFE syringe filter was obtained from local market, glass membrane 

(GF) syringe filter obtained from FilterBio® (Jiangsu, China), nylon filter 

obtained from Petratech (Jordan, Amman), pH test strips, pH‑Fix 0–14, 

fixed indicator obtained from Macherey-Nagel GmbH & Co. KG® 

(Darmstadt, Germany), disposable insulin syringe obtained from Home care 
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(Berlin, Germany) and sheep nasal mucosa obtained from local 

slaughterhouse.  

3.2. Instruments and equipments 

Automated High Performance Liquid Chromatography (HPLC) system 

manufactured by Shimadzu (Tokyo, Japan) consisted of: LC20AT pump, 

SPD-20A photodiode array detector, SIL-20A Auto-sampler, CTO-20A 

temperature regulator oven. A (250 x 4.6 mm; 5um) C18 reverse phase 

column manufactured by Fortis Technologies (Cheshire, United Kingdom), 

Manual HPLC system was manufactured by Shimadzu (Kyoto, Japan) 

consisted of: LC-20AT Pump, SPD-20A UV-Vis Detector, CTO-20A 

Column Oven and VI manual sample injector was obtained from FLOM 

(Tokyo, Japan), TA. XT plus Texture analyzer manufactured by Stable 

Micro Systems (Surrey, UK), Glass Franz diffusion cells, volume of receiver 

12 mL, surface area of the receiver opening is 1.767 cm2 manufactured by 

Prerme gear (Road Hellertown, PA, USA), Dual syringe pump (Anhui, 

China), Water bath manufactured by Schutzart (Schwabach, Germany), 

Digital caliper micrometer obtained from local market, European 2-pin plug 

(Wertheim, Germany), aquarium pump obtained from local market, light 

microscope B-293 manufactured by OPTIKA (Ponteranica, Italy), MZ 2C 

NT vacuum pump was obtained from Vacuubrand (Wertheim, Germany), 

Inolab pH 720 pH-meter was manufactured by WTW (Oberbayern, 
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Germany), Bi-hydro still 4.1 water distillation apparatus was manufactured 

by POBEL (Madrid, Spain), plane tube 5 ml obtained from AFCO-DISPO 

(Amman, Jordan) and KMF 720 Constant climate chamber manufactured by 

BINDER (Shanghai, China). Dissolution apparatus PTWS 620I 

manufactured by PHARMA TEST (Hainburg, Germany). 

3.3. Simulated nasal fluid preparation 

The simulated nasal fluid was prepared by dissolving 14.196 g of di-sodium 

hydrogen phosphate (HNa2PO4); (molecular weight: 141.96 g.mol-1) in 1 

liter to achieve 0.1 molar phosphoric acid, which was adjusted to pH 6.5 

using H3Po4 solution, and 8.77 g sodium chloride (NaCl), 2.98 g potassium 

chloride (KCl), 0.59 g calcium chloride (CaCl2) was added to the phosphate 

buffer as mentioned in the work of (P. Pandey et al. 2017; Laffleur et al. 

2018; Laffleur 2018).   

3.4. Chromatographic method  

3.4.1. Standard solution preparation 

Standard solution of RvT for the chromatographic method was prepared by 

dissolving 40 mg of RvT in 100 ml of water, then 1 ml was diluted to 100 

ml (4 µg.ml-1). 

3.4.2 First method  

The mobile phase consists of mobile phase, Methanol (MeOH): acetonitrile 

(ACN): ammonium phosphate buffer (15:15:70). The ammonium buffer 
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consists of 0.065 molar di-basic ammonium phosphate which was adjusted 

with phosphoric acid (H3PO4) solution to pH 7.0. The detector was set at 215 

nm; column, C18 (250 x 4.6 mm; 5um); flow rate, 1.5 mL/min; injection 

volume, 20 µL; and column temperature 40ºC. 

3.4.3. Second method  

The second method consists of mobile phase, MeOH: ACN: ammonium 

phosphate buffer (20:20:60). The phosphate buffer consists of 0.065 molar 

di-basic ammonium phosphate which was adjusted with H3PO4 solution to 

pH 7. The detector was set at 215 nm; column, C18 (250 x 4.6 mm; 5um); 

flow rate, 1.5 mL/min; injection volume, 20 µL; column temperature, 40ºC. 

3.4.4. Third method   

The third method consists of mobile phase, MeOH: ACN: ammonium 

phosphate buffer (25:25:50). The ammonium buffer consists of 0.065 molar 

di-basic ammonium phosphate which was adjusted with H3PO4 solution to 

pH 7. The detector was set at 215 nm; column, C18 (250 x 4.6 mm; 5um); 

flow rate, 1.5 mL.min-1; injection volume, 20 µL; column temperature, 40ºC. 

3.4.5. Fourth method  

The fourth method consists of mobile phase, MeOH: ACN: ammonium 

phosphate buffer (30:30:40). The ammonium buffer consists of 0.065 molar 

di-basic ammonium phosphate which was adjusted with H3PO4 solution to 
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pH 7. The detector was set at 215 nm; column, C18 (250 x 4.6 mm; 5um); 

flow rate, 1.5 mL.min-1; injection volume, 20 µL; column temperature, 40ºC. 

3.5. Validation of the optimum chromatographic method  

3.5.1. Selectivity 

Selectivity was assessed by preparing standard, tartaric acid and excipient 

solutions and injected each one into HPLC unit, then all the resulting 

chromatograms were compared to evaluate the interference. 

3.5.1.1. Standard solution preparation  

Standard solution of RvT was prepared by dissolving 20 mg of RvT in 100 

ml of water, then 1 ml was diluted to 10 ml (20 µg.ml-1), the solution was 

injected into the HPLC unit and the chromatogram was obtained.  

3.5.1.2. Tartaric acid solution preparation  

Tartaric acid solution was prepared by dissolving 79 mg of tartaric acid in 

100 ml of water, then 1ml was diluted to 100 ml (7.9 µg ml-1) which is 

equivalent to the concentration of tartaric acid in 20 µg ml-1 of RvT, the 

solution was injected to the HPLC unit and the chromatogram was obtained. 

3.5.1.3. Excipient in the simulated nasal fluid sample 

preparation   

Excipient solution was prepared equivalently to the maximum amount of 

each excipient in each one patch of formulations. An amount of each 
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excipient: 24 mg gelatin, 250 mg propylene glycol, 100 mg glycerol, 20 mg 

HPMC K4M, and 20 mg HPMC K15M, was dissolved in 100 ml of SNF 

with aid of stirring for 1 hour at 70ᵒC, then 1 ml of the solution was diluted 

to 10 ml with SNF, the solution was filtrated and injected to the HPLC unit 

and the chromatogram was obtained. 

3.5.2. System suitability  

Standard solution of RvT was prepared by dissolving 20 mg of RvT in 100 

ml of water, then 1 ml was diluted to 10 ml (20µg ml-1), 5 injections of the 

sample solution was injected to the HPLC unit and the area under the curve 

(AUC) for each injection was obtained and RSD for all peaks injections. 

3.5.3. Linearity  

Linearity was performed by preparing 7 different concentrations of RvT, 8, 

12, 16, 20, 24, 28 and 32 µg ml-1 which are equivalent to 40%, 60% ,80% 

,100% ,120% ,140% and 160% of the standard concentration, respectively. 

These solutions preparations were prepared from the same stock solution 

which was prepared by dissolving 20 mg of RvT in 100 ml, then a series 

dilution (0.4 ml, 0.6 ml, 0.8 ml, 1 ml,1.2 ml,1.4 ml and 1.6 ml) to 10 ml, and 

each solution was injected into the HPLC unit in triplicates. 

3.5.4. Precision  

The precision of the method was determined at two levels: repeatability and 

intermediate precision. 
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3.5.4.1. Sample solution preparation  

The sample solution preparation for the precision evaluation was by 

preparing 6 artificial sample solutions following this procedure.  

- Stock solution of RvT was prepared by dissolving 20 mg RvT in 100 

ml SNF.  

- Standard solution was prepared by dilution of 1 ml from stoke solution 

up to10 ml of SNF. 

- Excipient solution was prepared by dissolving an equivalent amount 

of 10 nasal patches: 0.24 g gelatin, 2.5 g propylene glycol, 1 g 

glycerol, 0.2 mg HPMC K4M, and 0.2 mg HPMC K15M in 100 ml 

SNF.  

- The artificial sample solution was prepared by transferring one ml of 

the excipient solution to 7 ml of SNF, stirred at 70 ºC over a hot plate 

for one hour, then one ml of the stock solution was added and stirred 

at 70 ºC over a hot plate for 15 minutes. Finally, the solution volume 

completed to 10 ml by SNF. 

3.5.4.2. Repeatability 

The repeatability was obtained by injecting 6 artificial sample solutions of 

20 µg.ml-1 RvT containing excipient in SNF as described in 3.5.4.1. section, 

then each solution was filtrated using nylon syringe filter and injected to the 
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HPLC unit and the peak area was obtained, then the assay was calculated 

according to the following equation: 

%Assay =
As

Ast
∗

𝐶𝑠𝑡

𝐶𝑠
∗ 100% … (1) 

As: Peak area of the artificial sample solution. 

Ast: Peak area of the standard solution. 

Cst: Stander concentration. 

Cs: Artificial sample concentration  

3.5.4.3. Intermediate precision 

The intermediate precision was obtained by injecting 6 artificial sample 

solutions of 20 µg.ml-1 RvT containing excipient in SNF as described in 

3.5.4.2. section, then each solution was filtrated using nylon syringe filter 

and injected to the HPLC unit and the peak area was obtained. This 

procedure is repeated in different days (inter-day), and then tested using 

different instruments; the automated HPLC and the manual HPLC (inter-

Instrument), and by different persons; me and my lab partner Asmaa Abu 

Sa’aleek (inter-person). then assay was calculated according to the 

previously mentioned equation (1). 

3.5.5. Recovery  

Recovery was studied at 50%, 100% and 150 % of standard solutions which 

is equivalent to 10, 20 and 30 µg ml-1 of RvT, respectively, where the 

preparation procedure described in 3.5.5.1. section. Three replicates from 
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each level were prepared with excipient equivalent to one nasal patch, as 

described in section 3.5.5.1, to have 9 determination solutions each, then 

each solution was filtrated using nylon syringe filter and injected to the 

HPLC unit, and the peak area was obtained to calculate the % recovery 

according to the following equation: 

% Recovery =
Ar

Ast
∗

𝐶𝑠𝑡

𝐶𝑟
∗ 100 … (2) 

Ar: Peak area for recovery sample solution. 

Ast: Peak area for standard solution. 

Cr: Concentration of recovery sample. 

Cst: Concentration of standard solution. 

3.5.5.1. Sample solutions preparation 

The sample preparation for the recovery test was achieved by preparing two 

stock solutions:  

- The first stock solution was prepared by dissolving 20 mg of RvT in 

100 ml SNF.  

- The second stock solution was prepared by dissolving an excipient 

amount equivalent to 10 patches (0.24 g Gelatin, 2.5 g Propylene 

Glycol, 1 g Glycerol, 0.2 mg HPMC K4M, and 0.2 mg HPMC K15M) 

in 100 ml SNF. 
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- The standard solution was prepared by diluting 0.5, 1 and 1.5 ml of 

the first stock solution up to 10 ml SNF to achieve concentrations of 

10, 20, and 30 µg.ml-1, respectively, of standard solution. 

- The recovery sample solution was prepared by transferring 0.5, 1 and 

1.5 ml of the first stock solution each to 10 ml volumetric flask, and 1 

ml of the second stock solution was transferred to the same volumetric 

flask before diluting each up to 10 ml by SNF to achieve concentration 

of 10, 20, and 30 µg.ml-1, respectively, of artificial sample solution, 

then each solution was stirred for 15 min over a hot plat at 70ºC. 

3.5.6. Limit of detection  

The limit of detection (LOD) of the HPLC method was determined using the 

SD and the slop (S) of the linearity curve according to the following equation 

(ICH guidelines Q2(R1) 2005): 

LOD = 3.3 ∗
SD

S
… (3) 

3.5.7. Limit of quantitation 

The limit of quantification (LOQ) of the HPL C method was determined 

using the SD and the slop (S) of the linearity curve according to the following 

equation(ICH guidelines Q2(R1) 2005):  

LOQ = 10 ∗
SD

S
 … (4) 
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3.5.8. Robustness  

The robustness of the chromatographic method was studied by preparing 20 

µg.ml-1 solution of RvT and injected it to the HPLC unit with slight 

modifications on analytical method conditions. The modifications were on 

column oven temperature 38 ⁰C, 40 ⁰C, and 42 ⁰C, wavelength 214 nm, 215 

nm, and 216 nm, flow rate 1.4 ml.min-1, 1.5 ml.min-1, and 1.6 ml.min-1, buffer 

pH 6.9, 7, and 7.1, mobile phase composition (44:28:28, 40:30:30, and 

38:32:32) (ACN: MeOH: Buffer), then the RSD for the retention time (RT), 

area under the curve (AUC), tailing factor and number of theoretical plates 

(N) determined to check the robustness of the method.  

3.6. Filtration compatibility 

Filtration compatibility was investigated using 20µg.ml-1 standard solution 

of RvT. The RvT solution was injected to HPLC unit without filtration, then 

the solution was filtrated using different syringe filter types; nylon, PTFE, 

and glass. 4 ml was filtrated and each ml was collected in a separated vial, 

three filter was assessed from each type to obtain 3 replicates for each 

sample, then each sample was injected to the HPLC unit and peak area was 

compared to the peak area of the non-filtrated solution according to the 

following equation: 

% Filtrated =
Peak area of filtrate solution

Peak area of non filtrate solution  
∗ 100% … (5) 
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3.7. Stability in SNF 

One nasal patch was dissolved in 100 ml SNF, then stored in room 

temperature inside umber and transparent container, in refrigerator inside 

umber and transparent container, and at temperature 35ºC. Each solution was 

injected at a predetermined point: 24h, 48h and 72h and the peak area 

compared to freshly prepared standard solution each time point of RvT, then 

the % stability was calculated according to the following equation: 

% Stability =
Ps

Pss
∗

𝐶𝑠𝑠

𝐶𝑠
∗ 100% … (6) 

Ps: Peak area of standard solution. 

Pss: Peak area of freshly prepared standard solution. 

Cs: Concentration of standard solution. 

Css: Concentration of freshly prepared standard solution. 

3.8. Nasal Mucosa Preparation 

Sheep heads were obtained from a local slaughterhouse within 2 hours after 

the sheep were sacrificed. Firstly, the hair was removed using sharp knife, 

then the nose was removed from the head using electric bone sawing 

machine, then washed and stored in normal saline, then it was transported in 

an iced container. The sheep noses were stored in -80 ⁰C freezer to avoid 

tissue damage. The nasal mucosa including the nerves was isolated carefully 

using surgical scalpel from each nostril (H. Y. Karasulu et al. 2008). 
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3.9. Nasal Patch Preparation  

Nasal patches were prepared in a matrix form using gelation method based 

on quick melting step (Vasvári et al. 2018). This was achieved by mixing 

Water, glycerol and PG in the ratio 20:20:60 (v/v) respectively, then the 

mixture was degassed using vacuum pump for 2 hours with continuous 

magnetic stirring. The degassed mixture was added to the HPMC and gelatin 

mixture at percentages mentioned in Table 3.1 up to volume 10 ml with 

continuous magnetic stirring for 1 hour on a hot plate at 70ºC.  After all 

ingredients were dissolved, RvT was added with continuous stirring for 15 

min, then the solution was filled in a 1 ml syringe with internal diameter of 

5 mm and sealed tightly using parafilm to avoid solvent loss. The mixture 

was lefted over night at room temperature to solidify. One nasal patch 

contains 0.4 ml of the solidified gel. 

 Table 3.1. Composition of the fabricated nasal patches  

Formula 

Number 

Gelatin 

(W/W) 

HPMC 

K4M 

(W/W) 

HPMC 

K100M 

(W/W) 

Propylene 

Glycol 

(W/W) 

Glycerol 

(W/W) 

Water 

(W/W) 

Drug 

(W/W) 

F1 5.6% 1.9% - 53.0% 21.8% 16.8% 0.9% 

F2 3.7% 4.7% - 52.4% 21.6% 16.7% 0.9% 

F3 5.6% - 1.9% 53.0% 21.8% 16.8% 0.9% 

F4 3.7% - 4.7% 52.4% 21.6% 16.7% 0.9% 
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3.10. Nasal Patch Characterization 

3.10.1. Physical appearance  

The physical appearance such as color, transparency and surface area 

roughness were assessed visually for every nasal patch. The odor was 

checked by smelling. 

3.10.2. Diameter and length  

The diameter and the length of the nasal patch was measured using electronic 

caliper for 6 samples from each formula.  

3.10.3. pH determination of the patch surface  

The surface pH was measured for 6 replicates of each formula using pH 

stripes with fix indicator, by spreading one drop of distilled water on the 

surface of the patch, then wait for one minute before contacting the strip with 

the witted patch. the color changing was compared with the manual of the 

strips to determine the pH value (Tedesco, Monaco-lourenço, and Carvalho 

2016).  

3.10.4. Mechanical properties assessment 

3.10.4.1. %Elongation at Break  

The elongation percentage at break was determined by using Texture 

Analyzer to measure the initial length of each formula.  Each patch was fixed 
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horizontally to both probes of the texture analyzer using super glue. Both 

probes moved onward each other at 1 mm sec-1 speed till rupture occurred. 

The length of the patch was recorded just before the break as length at break, 

the elongation percentage was calculated according to the following equation 

(Laffleur et al. 2018): 

%Elongation =
(Length at break−Initial Length)

Initial Length 
∗ 100%  … (7) 

3.10.4.2. Tensile Strength  

Tensile Strength was determined using Texture Analyzer by measuring the 

force needed to break the patch. It was performed by fixing the patch 

horizontally to each probe using super glue, then the upper probe moved 

onward in 10 mm sec-1 speed, till the patch ruptured, the device measure the 

force (g) needed for the rupture, then the tensile strength was calculated 

according to the following equation (Laffleur et al. 2018): 

Tensile strength (N mm2)⁄ =
Force required for rupture∗9.81

Cross sectional area for patch 
 … (8) 

3.10.5. Mucoadhesive assessment  

3.10.5.1. Detachment Force 

The Detachment force was determined for 6 replicates of each formula using 

the texture analyzer. The nasal patch was attached to the lower probe, and 

the nasal mucosa was attached to the upper probe, after socking it in SNF 
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with 3% (w/w) mucin for 30 minutes, then the device parameter was set on 

1 mm/sec-1 speed to move upward and the distance between the two probes 

was 4.5 mm. The nasal patch was allowed to attach for two minutes before 

each run starts this method inspired from the work of (Nižić et al. 2020). 

3.10.5.2. Falling Liquid Test  

The falling liquid test was performed by self-made falling liquid apparatus 

using syringe pump, which was set at 500 ml.h-1 to achieve a constant flow 

of SNF with 3% (w/w) mucin, then the syringe was linked to a glass 

condenser tube which was fixed downward by 10 º, where the nasal mucosa 

was adhered inside the tube after cutting it to 1×6 cm pieces and socking it 

in the same media, then the nasal patch was allowed to attach on the nasal 

mucosa. The temperature inside the tube was controlled (35 ºC), by attaching 

the condenser tube to aquarium pump, which was placed in water bath as 

represented in Figure 3.1. Finally, a camera was set in a holder and a ruler 

was fixed in the condenser tube to calculate the speed of which the patch 

moves by recording the time required for each patch to move 1 cm distance. 

This test was repeated to 3 replicates from each formula. 
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Fig. 3.1: Scheme draw for the falling liquid apparatus.  

3.11. Content Uniformity  

The content uniformity (CU) for formulations was assessed using 10 patches 

from each formula by dissolving each patch in 100 ml distilled water at 35 

ºC for 30 minutes, where 10 sample prepared from each then each sample 

was injected into HPLC unit (The United States Pharmacopeial Convention 

2021). 

3.12. Release Study 

The release study was carried out in two different experiments:  

- using 5 ml sample tubes filled with 5 ml of SNF, each nasal patch was 

filled in a dialysis bag (cut off ~ 5000 Dalton), before it was immersed 

in the media, since the media was set in a 35 ºC water bath with a 

stirrer (200 rpm) in each sample tube, 0.2 ml of the sample was taken 

at a predetermined time point 0.5, 1, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 20, 22, 

24 hour, then each sample was completed up to 1 ml using SNF, and 
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centrifuged (5 min at 16000 rpm), then each sample was injected to 

HPLC unit. 

- Using the basket dissolution apparatus, 6 vessels as every vessel filled 

in 500 ml SNF, temperature set at 35 °C and 50 rpm, samples obtained 

after one hour, then injected to HPLC unit. 

3.13. Ex-vivo Permeation Study  

The nasal permeation study of RvT was performed using Franz diffusion 

cell, with volume of 12 ml and diffusion effective area of 1.767 cm2. The 

receptor compartment was filled with SNF at controlled temperature (35 ⁰C), 

where the nasal patch was placed in the donor compartment over the sheep 

nasal mucosa which was prepared as mentioned previously in section 3.8 and 

socked in SNF, then mounted between the donor and the accepter 

compartment as shown in Figure 3.2. A 0.3 ml of sample was withdrawn at 

each time point 0.5, 1, 2,3,4,5,6,7,8, 24 hours and replaced with fresh SNF, 

then each sample placed in an Eppendorf tube and centrifuged for 10 min at 

16000 rpm to eliminate the solid precipitate from the media, then the clear 
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solution of the sample placed in an 250 µl glass insert and injected to the 

HPLC (Abdelrahman et al. 2017).  

The % cumulative amount of RvT permeated through the nasal mucosa %(Q) 

was plotted versus time (t). (Q) was calculated according to the following 

equation (Bruschi 2015a): 

Q = (Ci V + ∑ (Ci S)) 
n−1

i=1
… (9) 

Q: Cumulative amount of drug permeated of membrane (mg.cm-²). 

Cn: Drug Concentration μg.ml-1 determined at nth sampling interval.  

V: Volume of the receiver solution in the Franz diffusion cell; 12 ml.  

∑Ci: Sum of concentration of RvT mg.ml-1 calculated at sampling intervals 

1 through n-1.  

Fig. 3.2. Scheme draw to illustrate Franz cell parts and the 

mechanism of ex-vivo permeation study using Franz cell 

(Pund, Rasve, and Borade 2013). 
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S: Volume of the individual sample.  

A: Surface area of Franz cell opening; 1.767cm². 

The steady-state flux (Jss); mg/cm²/hr was calculated from the slop of the 

linear portion of the (Q/A) versus (t) plot.  

Permeability coefficient (P) cm.hr-1 was calculated according to equation 

(Gouda, Baishya, and Qing 2017): 

P =
Jss

C
… (10) 

P: Permeability coefficient (cm.hr-1).  

Jss: The steady-state flux (mg/cm²/hr)  

C: The drug concentration in the donor compartment (mg.ml-1). 

The concentration of drug in receiver compartment is considered negligible 

compared to the concentration of drug in the donor compartment, under sink 

condition (Patrick J. Sinko 2011). 

3.14. Release Kinetics 

The release kinetics was assessed using Lap Plot2 software version 2.8.1. 

LabPlot2 is a KDE-application for interactive graphing and analysis of 

scientific data. The model fitting was determined in terms of (K); the 

dissolution rate constant, (n); drug release exponent, (R2); correlation 

coefficients, (SSR); sum of squared residual, the residual data plotting. 
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Korsmeyer-Peppas model was investigated to understand the mechanism of 

drug release (Gouda, Baishya, and Qing 2017).  

Korsmeyer-Peppas model equation (Bruschi, 2015): 

𝑄𝑡 = 𝑘𝑡𝑛 … (11) 

Where: 

Qt: % Cumulative amount of drug at time. 

K: Release rate constant. 

T: Time. 

n: Drug release exponent.  

The residual data were calculated by subtracting the analysis data from the 

data obtained from the model application. 

3.15. Stability Study  

The stability study was carried out according to the (ICH guidelines Q1F 

2021) in terms of content uniformity and physical appearance, by storing the 

nasal patch inside a nylon package in a stability chamber under controlled 

normal condition at 30 ºC, and 65 RH for one, three and six months, and in 

accelerated condition 40 °C, and 75 RH for one month, then the content for 

6 patches were re-assessed by dissolving one nasal patch in 100 ml to have 

40 µg.ml-1 RvT concentration and injecting each sample to HPLC unit, and 

determine the content (Assay) it was calculated as mentioned in section 3.11.  
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Chapter (4) Results 

4.1. Chromatographic method optimization  

The chromatograms and characteristics of each method are summarized in 

figures (4.1 - 4.4) and table 4.1. 

 

Fig.4.1: Chromatogram of the first method. Sample concentration, 4µg ml-1; mobile phase, 

MeOH: ACN: ammonium buffer (15:15:70); column, C18 250 x 4.6 mm, 5um; column oven 

temperature, 40 °C; flow rate, 1.5 ml.min-1; wavelength, 215 nm; injection volume, 20 µl. 

 

Fig.4.2: Chromatogram of the second method. Sample concentration, 4µg ml-1; mobile phase, 

MeOH: ACN: ammonium buffer (20:20:60); column, C18 250 x 4.6 mm, 5um; column oven 

temperature, 40 °C; flow rate, 1.5 ml.min-1; wavelength, 215 nm; injection volume, 20 µl. 
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Fig.4.3: Chromatogram of the third method. Sample concentration, 4µg ml-1; mobile phase, 

MeOH: ACN: ammonium buffer (25:25:50); column, C18 250 x 4.6 mm, 5um; column oven 

temperature, 40 °C; flow rate, 1.5 ml.min-1; wavelength, 215 nm; injection volume, 20 µl. 

 

Fig.4.4: Chromatogram of the fourth method. Sample concentration, 4µg ml-1; mobile phase, 

MeOH: ACN: ammonium buffer (30:30:40); column, C18 250 x 4.6 mm, 5um; column oven 

temperature, 40 °C; flow rate, 1.5 ml.min-1; wavelength, 215 nm; injection volume, 20 µl. 
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Table 4.1: Characteristics the tested chromatographic methods. 

Method Name RT TF N Mobile Phase Composition (v/v) 

First method 28.2 1.40 11105 ACN:MeOH: Buffer (15:15:70) 

Second method 15.2 1.35 12463 ACN:MeOH: Buffer (20:20:60) 

Third method 8.6 1.36 10947 ACN:MeOH: Buffer (25:25:50) 

Fourth method 5.5 1.13 11741 ACN:MeOH :Buffer (30:30:40) 

 

4.2. Validation of analysis method 

4.2.1. Selectivity 

The selectivity results are presented in the chromatogram in figure 4.6:  

 

 
Fig. 4.5: The selectivity chromatograms of: Data 1, 20 µg.ml-1 RvT standard; Data 2, 7.9 µg.ml-

1 tartaric acid; Data 3, SNF + excipients. 
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4.2.2. System suitability 

The system suitability prameters are summarized in table 4.2:  

Table 4.2 Peak area of 5 repeated injections of 20µg ml-1 standard solution of RvT 

Injection 

Number 
Peak area N TF RT 

1 316607 3850 0.98 5.80 

2 314349 3753 0.97 5.79 

3 317785 3732 0.98 5.79 

4 315572 3756 1.00 5.79 

5 313483 3752 0.98 5.79 

Avg 315559 3769 0.98 5.79 

RSD 0.54% 1.23% 1.12% 0.08% 

 

4.2.3. Linearity  

The linearity of the chromatographic for low concentration of RvT method 

was proved and presented in table 4.3 and figure 4.6: 

Table 4.3: The average peak area and the RSD% for the 3 replicates of the same concentration 

in the linearity curve, n=3. 

Concentration 

(µg ml-1) 
%Level 

Average Peak 

area 
%RSD 

8 40% 126100 1.60% 

12 60% 192737 0.88% 

16 80% 256820 0.33% 

20 100% 320609 0.66% 

24 120% 382544 0.10% 

28 140% 449204 0.90% 

32 160% 509363 0.25% 
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Fig.4.6: The linearity curve of RvT, n=3. 

 

4.2.4. Precision 

4.2.4.1. Repeatability 

 The assay results and the RvT of 6 artificial samples are presented in table 

4.4: 

Table 4.4: The assay for repeatability result for 6 artificial sample solution preparation under 

the same condition 

Sample Assay % RT 

1 101.6 % 5.59 

2 101.3 % 5.59 

3 101.4 % 5.60 

4 100.7 % 5.60 

5 101.2 % 5.59 

6 101.9 % 5.59 

Average 101.4 % 5.5915 

SD 0.40 0.0035 

RSD% 0.40 % 0.0627 

y = 15974x + 127.5
R² = 0.9999
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4.2.4.2. Intermediate precision  

The results of intermediate precision as inter-day, inter-instrument and 

inter-person are illustrated in table 4.5: 

Table 4.5: The assay results for intermediate precision: inter-day, inter-instrument, and inter-

person precision. 

Sample 
Assay 

Inter-day Inter- Instrument Inter-person 

1 101.1% 102.5% 100.4% 

2 99.2% 100.3% 101.3% 

3 100.2% 100.7% 98.5% 

4 100.2% 100.1% 100.7% 

5 100.0% 104.3% 100.0% 

6 100.3% 101.6% 100.4% 

Average 100.2% 101.6% 99.97% 

SD 0.59 1.59 1.04 

%RSD 0.59% 1.59% 1.04% 

 

4.2.5. Recovery  

The recovery was assessed and the results are presented in table 4.6: 

Table 4.6: The recovery study results, n=3. 

Level  
Concentration  

(µg ml-1) 
Recovery  %RSD  

50% 10 101.2% 1.63% 

100% 20 100.0% 1.72% 

150% 30 99.5% 1.07% 



49 
 

 
 

4.2.6. Limit of detection and Limit of quantitation 

The LOD equals 0.246 µg.ml-1. 

The LOQ equals 0.745 µg.ml-1. 

SD value equals 1189.31. 

S value equals 15966.45. 

LOD and LOQ both were calculated form the linearity curve represented in 

section 4.2.3. using the equations (3 and 4) in section 3.5.6. and 3.5.7. 

4.2.7. Robustness 

4.2.7.1. Column oven temperature robustness 

The column oven temperature robustness results are presented in table 4.7: 

Table 4.7: Column oven temperature robustness results. 

Sample 
Temperature 38 Temperature 40 Temperature 42 

Area RT TF N Area RT TF N Area RT TF N 

1 308945 5.81 1.09 3850 310228 5.97 0.98 4390 308697 5.80 1.06 3980 

2 307908 5.83 1.11 3753 309938 5.96 0.97 4398 308419 5.79 1.06 3970 

3 307788 5.83 1.11 3732 310601 5.95 0.98 4343 308470 5.79 1.06 3969 

4 307787 5.84 1.10 3756 310311 5.94 1.00 4253 308883 5.79 1.07 3974 

5 307514 5.84 1.11 3752 310309 5.93 0.98 4258 308261 5.79 1.08 3910 

6 307811 5.84 1.12 3712 310317 5.92 1.01 4327 308281 5.79 1.08 3865 

Average 307959 5.83 1.11 3759 310284 5.94 0.99 4328 308502 5.79 1.07 3945 

%RSD 0.16% 0.21% 1.04% 1.26% 0.07% 0.32% 1.64% 1.44% 0.08% 0.07% 0.91% 1.18% 
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4.2.7.2. Wavelength robustness  

The results of wavelength robustness are presented in table 4.8: 

Table 4.8: Wavelength robustness results. 

Sample 
Lambda 214 Lambda 215 Lambda 216 

Area RT TF N Area RT TF N Area RT TF N 

1 323929 5.84 1.03 3991 310228 5.97 0.98 4390 285461 5.83 1.06 3938 

2 321603 5.84 1.04 4024 309938 5.96 0.97 4398 285322 5.83 1.06 3936 

3 321589 5.83 1.05 4020 310601 5.95 0.98 4343 285485 5.82 1.08 3878 

4 321520 5.84 1.04 4016 310311 5.94 1.00 4253 285168 5.82 1.07 3874 

5 321827 5.83 1.05 4060 310309 5.93 0.98 4258 285067 5.82 1.07 3920 

6 321447 5.83 1.05 3960 310317 5.92 1.01 4327 285250 5.82 1.07 3929 

Average 321986 5.83 1.05 4012 310284 5.94 0.99 4328 285292 5.82 1.07 3912 

%RSD 0.30% 0.05% 0.75% 0.84% 0.07% 0.32% 1.64% 1.44% 0.06% 0.06% 0.81% 0.74% 

 

 

 

4.2.7.3. Flow rate robustness 

The results of flow rate robustness are summarized in table 4.9: 

Table 4.9: Flow rate robustness results. 

Sample 
Flow Rate 1.4 Flow Rate 1.5 Flow Rate 1.6 

Area RT TF N Area RT TF N Area RT TF N 

1 332302 6.32 1.03 4248 310228 5.97 0.98 4390 291108 5.51 1.00 4015 

2 332287 6.32 1.01 4281 309938 5.96 0.97 4398 290930 5.50 1.01 4053 

3 332012 6.31 1.03 4270 310601 5.95 0.98 4343 291355 5.50 1.01 3990 

4 332046 6.30 1.03 4254 310311 5.94 1.00 4253 291135 5.49 1.03 3929 

5 331721 6.30 1.01 4325 310309 5.93 0.98 4258 290723 5.49 1.02 3910 

6 331287 6.29 1.01 4305 310317 5.92 1.01 4327 289363 5.51 1.01 4021 

Average 331943 6.31 1.02 4280 310284 5.94 0.99 4328 290769 5.50 1.01 3986 

%RSD 0.12% 0.19% 1.06% 0.69% 0.07% 0.32% 1.64% 1.44% 0.25% 0.19% 0.94% 1.40% 
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4.2.7.4. Buffer pH robustness 

The buffer pH robustness results are summarized in table 4.10: 

Table 4.10: Buffer pH robustness results. 

Sample 
Buffer pH 6.9 Buffer pH 7 Buffer pH7.1 

Area RT TF N Area RT TF N Area RT TF N 

1 305152 5.67 0.96 6799 310228 5.97 0.98 4390 303689 6.16 0.99 7000 

2 305321 5.67 0.97 6619 309938 5.96 0.97 4398 304582 6.16 1.00 6959 

3 305170 5.67 0.98 6522 310601 5.95 0.98 4343 305674 6.16 1.02 6971 

4 319605 5.67 1.00 6389 310311 5.94 1.00 4253 302160 6.19 1.00 6866 

5 303990 5.67 0.98 6503 310309 5.93 0.98 4258 303287 6.20 1.00 7009 

6 305140 5.67 0.97 6412 310317 5.92 1.01 4327 303480 6.20 1.01 6991 

Average 307396 5.67 0.98 6541 310284 5.94 0.99 4328 303812 6.18 1.00 6966 

%RSD 1.95% 0.02% 1.53% 2.31% 0.07% 0.32% 1.64% 1.44% 0.39% 0.27% 1.08% 0.75% 

 

 

 

 

4.2.7.5. Mobile phase composition robustness 

Mobile phase composition robustness results are presented in table 4.11: 

 

Table 4.11: Mobile phase composition (ACN: MeOH: Buffer) robustness results. 

Sample 
44:28:28 40:30:30 38:32:32 

Area RT TF N Area RT TF N Area RT TF N 

1 285048 6.00 1.18 8980 310228 5.97 0.98 4390 310601 5.95 0.95 5343 

2 286446 5.95 1.19 8943 309938 5.96 0.97 4398 309527 5.75 0.95 5725 

3 285300 5.92 1.20 8893 310601 5.95 0.98 4343 309474 5.74 0.95 5565 

4 285300 5.92 1.18 8893 310311 5.94 1.00 4253 309335 5.73 0.95 5461 

5 285943 5.89 1.20 8812 310309 5.93 0.98 4258 310091 5.72 0.95 5326 

6 285606 6.00 1.20 8903 310317 5.92 1.01 4327 309974 5.71 0.95 5213 

Average 285607 5.94 1.19 8904 310284 5.94 0.99 4328 309834 5.77 0.95 5272 

%RSD 0.20% 0.72% 0.08% 0.71% 0.07% 0.32% 1.64% 1.44% 0.15% 1.56% 0.31% 1.28% 
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4.2.8. Filtration compatibility 

The filtration compatibility results are summarized in table 4.12: 

Table 4.12: Filtration compatibility result for 20 µg ml-1 RvT sample solution; filter size, 

0.45µm, 32mm for each type, n=3.   

Volume 

(ml) 

% Filtrated 

Nylon PTFE Glass 

1 ml 100.5% 100.2% 85.5% 

2 ml 100.0% 100.3% 97.1% 

3 ml 99.8% 100.2% 97.9% 

4 ml 100.2% 100.3% 97.9% 

 

4.2.9. Stability in SNF 

The stability in SNF was assessed and presented in table 4.13: 

Table 4.13: The % stability in SNF result for RvT standard solution of 20 µg.ml-1for 24 and 48 

hours in different condition, n=3. 

Time 

(hour) 

% Stability 

Refrigerated 

Light vial 

Refrigerated 

Dark vial 

Room 

Temperature 

Light vial 

Room 

temperature 

Dark vial 

Temperature 

35ºC 

0 100.4% 100.3% 101.6% 100.2% 100.5% 

24 100.7% 100.3% 99.7% 99.5% 99.5% 

48 97.7% 98.5% 97.0% 97.2% 97.9% 
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4.3. Nasal patch characterizing 

4.3.1. Physical appearance  

The physical appearance of the fabricated nasal patches are illustrated in 

Figure 4.7: 

 

4.3.2. Diameter and length 

The diameter and length measured for 6 replicates of each formula of nasal 

patches are illustrated in Table 4.14: 

Table 4.14: The Diameter and the length for the nasal patches, for F1, F2, F3, and F4, n=6. 

 

F1 

Avg ± SD 

F2 

Avg ± SD 

F3 

Avg ± SD 

F4 

Avg ± SD 

Diameter 4.7 ± 0.13 4.7 ± 0.12 4.8 ± 0.1 4.8 ± 0.11 

Length 23.6 ± 0.8 23.2 ± 0.7 23.0 ± 0.8 23.1 ± 0.55 

 

Fig. 4.7: Nasal Patches appears to be transparent and colorless, and no remarkable visual 

difference between formulas. 
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4.3.3. Mechanical properties assessment 

4.3.3.1. %Elongation at break  

The % elongation at break result are summarized for 6 replicates of each 

formula in Figure 4.8: 
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Fig. 4.8: Elongation percent result for each formula F1, F2, F3, and F4, calculated 

according to the equation (7) in section 3.10.4.1. and plotted as (Avg. ± SD) n=6. 



55 
 

 
 

4.3.3.2 .Tensile Strength  

The tensile strength profile and the tensile strength force for all formulas, 

which was calculated according to equation (8), and mentioned in section 

3.10.4.2. are illustrated in Figure 4.9: 

 

 

 

 

Fig. 4.9: Tensile Strength for each formula, A) Tensile profile, B) Tensile strength, 

n=6. 
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4.3.4. Mucoadhesive assessment  

4.3.4.1. Detachment Test 

The detachment force results for all formulas are summarized in Figure 

4.10: 
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Fig. 4.10: The detachment force (N) between the nasal patch and the nasal mucosa 

for each formula F1, F2, F3, and F4 using texture analyzer, n=6. 
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4.3.4.2 .Falling Liquid Test 

The falling liquid test results are summarized in Figure 4.11. 

 

 

4.4. Content Uniformity  

The uniformity of nasal patches content, which was calculated according to 

equation (9), mentioned in section 3.15. are illustrated in Table 4.15. 

Table 4.15: The content uniformity result for each formula, n=10. 

   % Amount   

 F1 F2 F3 F4 

Average  100.2% 99.9% 100.3% 98.9% 

SD 1.17 1.33 1.13 0.96 

RSD 1.17%  1.33% 1.12% 0.97% 
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Fig. 4.11: Falling liquid test; flow, 0.5 l.h-1, n=3. 
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4.5. Release study 

The release study result of RvT from each formula carried out in 5 ml SNF 

at 35 °C water bath are summarized in Figure 4.12:  
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Fig. 4.12: The release result carried out using sample tubes filled with 5 ml of SNF at 35 °C, result 

plotted in term of % released of RvT vs. time for F1, F2, F3, and F4, n=3. 
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4.6. Ex-vivo Permeation study  

The permeation of RvT result through nasal mucosal tissue summarized as 

% permeated amount in Figure 4.13. and the drug permeation parameters 

are summarized in Table 4.16: 

 

 

Table 4.16: Permeation parameters for RvT in each formula. 

Formula 

Q/A (mg/cm2) 

Avg ± SD 

Jss (mg/cm2/h) 

Avg ± SD 

P (cm/h) 

Avg ± SD*10-5 

F1 1.83 ± 0.01 0.19 ± 0.009 15.12 ± 0.6 

F2 1.69 ± 0.06 0.11 ± 0.007 8.01 ± 0.4 

F3 1.7 ± 0.04 0.15 ± 0.01 14.27 ± 0.7 

F4 1.75 ± 0.05 0.13 ± 0.003 10.64 ± 0.21 
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Fig. 4.13: The result for Ex-vivo permeation study of RvT through nasal mucosa tissue 

using Franz cell filled with 12 ml SNF at 35 °C with effective permeation area 1.767 cm2, 

n=3. 
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4.7. Release Kinetics   

The release of kinetic model fitting represented in Figure 4.14, the summery 

of model fitting values are summarized in Table 4.17 and the residual 

plotting is illustrated in Figure 4.15.   

 
Fig. 4.14: The models fitting result for F1, F2, F3, and F4. 
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Fig. 4.15: Plotting of residual data. 

 

Table 4.17: Summery for model fitting values. 

  F1 F2 F3 F4 

K 0.99 0.71 1.00 0.78 

n 0.75 0.65 0.72 0.71 

SSR 9.23 11.65 6.11 7.35 

R2 0.996 0.992 0.997 0.995 

 

The release of RvT for 1 hour using USP I dissolution apparatus result 

illustrated in Figure 4.16:  

 
Fig. 4.16: The % released of rivastigmine F1, F2, F3, and F4 for each formula in basket 

dissolution apparatus for 1 hour. 
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4.8. Stability Study 

The content uniformity of nasal patches reassessed after one, three and six 

months by comparing each nasal patch amount to the theoretical amount (4 

mg) and summarized in table 4.18: 

Table 4.18: The result for stability study of RvT in the formulation under controlled normal 

condition (30 °C, 65 RH), n=5. 

Time 

(month) 

% Amount 

F1 F2 F3 F4 

Zero 102.5% 102.8% 101.2% 100.9% 

One  100.7% 100.7% 100.5% 99.1% 

Three  98.4% 99.0% 100.9% 101.7% 

Six   98.2% 98.3% 101.7% 100.5% 

 

The physical appearance for each formula has no difference after long term 

storage; one, three and six months in the normal condition. Separation was 

noticed at the accelerated condition.   
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Chapter (5) Discussion 

5.1. Method Optimization  

The chromatographic method for the analysis of RvT in nasal patches was 

developed. The method was optimized to check its suitability for the 

determination of RvT in the preparation.  

The first analysis method tested was according to the USP monograph of 

RvT raw material analysis method (The United States Pharmacopeial 

Convention 2021), which states that the mobile phase is MeOH: ACN: 

ammonium phosphate buffer pH 7 (15:15:70). For the lack of availability of 

C8 column, we used C18 column to have the first chromatographic method. 

Changing the column type increases the RT of RvT peak from 6 minutes, as 

proposed in the USP monograph, to 28 minutes as shown in Figure 4.1. This 

RT appears to be time and chemical consuming. Therefore, we slightly 

modify the mobile phase composition by increasing the MeOH and ACN 

composition to speed up the analysis. 

The mobile phase of the second chromatographic method consists of MeOH: 

ACN: ammonium phosphate buffer pH 7 (20:20:60) which has a higher 

organic ratio than the first method. As shown in Figure 4.2 the RT of RvT 

peak was around 15 minutes, which is still considered a relatively high RT.  

Therefore, the mobile phase of the second chromatographic method was 

modified to the third chromatographic method which consists of MeOH: 
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ACN: ammonium phosphate buffer pH 7 (25:25:50). As shown in Figure 

4.3, the RT of rivastigmine peak was about 8.5 minutes. Further modification 

to the third method was applied to reach the fourth method which appeared 

to be the optimum method, where the retention time appeared to be around 

6 min. 

The fourth method which was the optimum method that is used in this 

project, which composed of the mobile phase, MeOH: ACN: ammonium 

phosphate buffer pH7 (30:30:40), gave a RT of the RvT peak around 6 min 

as appeared in Figure 4.4. Despite the low RT attained in this method, the 

selectivity of the method was still preserved, since there were no any 

interfering peaks around the RvT peak. Furthermore, this method showed 

good peak characteristics, since the N value was 11741, which was the 

highest value from the other methods, and TF value was 1.13, which was the 

least value from the other methods as presented in Table 4.1. These values 

are considered accepted values according to (Center for Drug Evaluation and 

Research 1994), since the N was > 2000 and the TF was <2.   

5.2. Method Validation 

The validation of the analytical method was performed in this project 

according to (ICH guidelines Q2(R1) 2005). Selectivity, system suitability, 

linearity, precision, intermediate precision, recovery, robustness, range, and 

limit of detection were evaluated. 
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5.2.1 Selectivity   

Selectivity is the ability to assess the unequivocally of the analyte in the 

presence of other components, which may be expected to be present such as 

impurities, degradants, matrix, and excipient. Selectivity could be expressed 

as specificity in many references such as (ICH guidelines Q2(R1) 2005).  

Rivastigmine peak appears around 6 minutes. On the other hand, there is no 

interfering peaks of excipient, tartaric acid or SNF appear around 6 minutes 

as observed in Figure 4.5, which indicates a good selectivity of the 

chromatographic method for Rivastigmine. 

5.2.2. System Suitability  

System suitability is an integral part of HPLC method. It is used to evaluate 

performance of the chromatographic system for the analysis (ICH guidelines 

Q2(R1) 2005). System suitability was evaluated by 5 replicate injections of 

a standard preparation, where the RSD% for AUC of the 5 injections was 

0.55% as presented in Table 4.2, which is considered suitable according to 

Chromatography chapter <621> (The United States Pharmacopeial 

Convention 2021) since the accepted criteria is for the RSD% is NMT 2. 

5.2.3. Linearity 

The linearity of an analytical method is the ability to obtain directly 

proportional test results to the concentration or amount of analyte in the 

sample (ICH guidelines Q2(R1) 2005). The linearity performed by 
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preparation of 3 replicates of 7 different concentrations (8, 12, 16, 20, 24, 

28, 32) µg ml-1 of RvT, where each concentration level result of RSD NMT 

2% as shown in Table 4.3, where the R2 equals 0.9999 and the linear 

equation was (y = 15974x + 127.5) as shown in Figure 4.6. These results are 

considered acceptable since the concentrations have linear relation according 

to the Center of Drug Evaluation and Research (CDER) and (ICH guidelines 

Q2(R1) 2005), since the accepted criteria for the R2 is ≥ 0.995. 

5.2.4. Precision  

The precision of a chromatographic method expresses the closeness between 

a series of measurements obtained from multiple artificial sample solutions 

under the prescribed conditions. It is usually expressed as the variance, 

standard deviation, or coefficient of variation of 6 repeated measurements. 

The precision of this method was determined at two levels: Repeatability and 

Intermediate precision (ICH guidelines Q2(R1) 2005). 

5.2.4.1. Repeatability 

Repeatability represents the precision under the same conditions over a short 

time interval. Repeatability is also determined as intra-assay precision. 

Repeatability was determined by assaying 6 replicate of artificial sample 

solution in the same day, the same laboratory condition, and the same person, 

as documented in Table 4.4, the RSD% for 6 samples NMT 0.4. This 

considered precise according to acceptance criteria of the general chapter 
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<1225>, since the RSD% NMT 2 (The United States Pharmacopeial 

Convention 2021).  

5.2.5.2. Intermediate Precision 

Intermediate precision mainly expresses variations within-laboratories: 

different days, different analysts, different equipments, etc. (ICH guidelines 

Q2(R1) 2005). The intermediate precision was assessed in three different 

levels: same procedure of the precision was repeated after three days (inter-

day), using different HPLC instrument; the automated HPLC and the manual 

HPLC (Inter-Instrument), and by different persons; me and my lap partner, 

Asmaa Abu Sa’aleek (inter-person). The degree of closeness of the result 

represented using RSD%, the result as shown in Table 4.5 as the  RSD% 

was 0.59%, 1.59%, and 1.04% In row which is considered precise according 

to the general chapter <1225> (The United States Pharmacopeial Convention 

2021) since the acceptance criteria of RSD% ≤ 2. 

5.2.5. Recovery 

Recovery could be used to express the accuracy of the method, where it is 

sometimes termed as trueness. The accuracy of an analytical procedure 

expresses the closeness of the value which is accepted as an accepted 

reference value, and the value found (ICH guidelines Q2(R1), 2005), and 

how close the experimental value, to the true value (Center for Drug 

Evaluation and Research, 1994). It was attended at three different levels 
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(50%, 100%, and 150%) of the total quantity of a substance recoverable with 

all the excipient used in the formulation. This was covering the levels (80%, 

100%, and 120%) according to (Center for Drug Evaluation and Research, 

1994). Different levels were evaluated as shown in Table 4.6, where the % 

recovery was between (99.5 - 101.2) % and the %RSD for each level was 

NMT 1.72% which is considered recoverable according to the acceptance 

criteria in the monograph of RvT in the (The United States Pharmacopeial 

Convention, 2021): % recovery (98%-102%), %RSD ≤ 2. 

5.2.6. Limit of detection and limit of quantitation 

The LOD of the method is the lowest amount of the analyte in the sample 

that can be detected but not necessarily quantitated as an exact value, where 

the LOQ of the method is the lowest amount of the analyte in the sample that 

can be determined quantitatively with suitable precision and accuracy of the 

method (ICH guidelines Q2(R1) 2005). Even that LOD and LOQ are not 

normally evaluated for the assay, dissolution, content, and potency according 

to (ICH guidelines Q2(R1) 2005). The LOD was calculated according to 

equation (3) in section 3.5.6. from the residual standard deviation of the 

regression line (1189) and the slope (15947) of the calibration curve that was 

obtained from the linearity data in section 4.2.3. The LOD value was 0.246 

µg.ml-1 which represents 3.07% of the lowest used concentration in this 

project (8µg.ml-1). 
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The LOQ is a parameter of quantitation for the analytes in low levels in the 

sample matrices. The LOQ was determined according to equation (4) in 

section 3.5.7. from the residual standard deviation of the regression line 

(1189) and the slope (15947) of the calibration curve that was obtained from 

the linearity data in section 4.2.3. The LOQ value was 0.745 µg.ml-1 which 

represents 8.75% of the lowest tested concentration in this project (8µg.ml-

1). All concentrations of RvT used in this project were above the LOD and 

LOQ. 

5.2.7. Robustness 

Robustness of an analytical procedure indicates its reliability during normal 

usage as it is a measure of its capacity to remain unaffected by small, but 

deliberate variations in method parameters (ICH guidelines Q2(R1) 2005), 

such as variations in Column oven temperature, wavelength, Flow rate, 

Buffer pH and Mobile phase composition, the reliability was expressed in 

terms of %RSD. 

Column oven temperature robustness was studied at 38ºC, 40ºC, and 42ºC, 

as documented in Table 4.7. All the %RSD for RT, AUC, N, and TF were 

in the range of (0.07-1.64) %. 

Wavelength robustness was studied at 214nm, 215nm, and 216nm, as 

documented in Table 4.8, the %RSD for RT, AUC, N, and TF were in the 

range of (0.05-1.64) %. 
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Flow rate robustness was studied at 1.4 ml min-1, 1.5 ml min-1,1.6 ml min-1 

as documented in Table 4.9, the %RSD for RT, AUC, N, and TF were in the 

range of (0.07-1.64) %. 

Buffer pH robustness was studied at 6.9, 7, 7.1 as documented in Table 4.10 

the %RSD for RT, AUC, N and TF were in the range of (0.02-1.64) %. 

Mobile phase composition robustness was studied in range of (44:28:28), 

(40:30:30), and (38:32:32) of (ACN: MeOH: Buffer), as documented in 

Table 4.11 the %RSD for RT, AUC, N and TF were in the range of (0.07-

1.64) %. 

As a result, all % RSD values for all circumstances were less than 2%, and 

according to the (Center for Drug Evaluation and Research 1994), which 

indicates that the system suitability criteria was met in all experiments and 

will not be affected by the deliberate variations that could be uncounted in 

any routine analysis  

5.3. Filtration Compatibility 

Filtration of the samples is usually necessary to prevent undissolved drug 

particles from entering the analytical sample and to remove the insoluble 

excipients that may otherwise cause high background or turbidity. As the 

SNF contains turbid particles <1092> the Dissolution Procedure chapter 

(The United States Pharmacopeial Convention 2021). Filtration 

compatibility was important to be evaluated for three different syringe filter 
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types (Nylon, PTFE, Glass) in order to compare and choose the best filter 

type. The % filtrated was calculated by comparing the filtrate solution to the 

non-filtrate solution following equation (5) mentioned in section 3.6. 

According to Table 4.12 the first ml of each syringe filter: nylon, PTFE, and 

GF has filtrated 100.5%, 100.2%, and 85.5% respectively of the RvT 

concentration. This could be due to the hydrophilicity of the PTFE syringe 

filter which is compatible with the hydrophilicity of RvT. As a result, discard 

the First 1ml if GF intended to be used or directly take the sample if Nylon 

or PTFE syringe filter used. 

5.4. Stability in SNF 

The stability of RvT in SNF was investigated to determine the stability of 

the samples after preparation. and during the release time of the formulas. 

Furthermore, samples were in solution for multiple hours in the laboratory 

environment before testing it to the HPLC unit. Based on that, the stability 

in solution should be tested. The stability in solution was calculated by 

equation (6) mentioned in section 3.7. where the result represented in Table 

4.13 shows that RvT in the SNF is stable for 48 hours, where it appears to 

start degradation after 48 hours for the slight decrease in % stability. It is 

noteworthy to mention that the stability of RvT is not affected significantly 

by the environmental condition for 48 hours, even that it is suggested to keep 

the samples in an umber container at refrigerated temperature. 
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5.5. Nasal tissue preparation  

The sheep heads used in this project were taken from Australian whether 

sheep which has a lifespan of about one year - to ensure the full development 

of the olfactory region - (Barrios, Quinteiro, and Salazar 2014). The olfactory 

epithelium is located in the ethmoturbinates mainly in their posterior and 

medial areas, which was also observed in (Barrios, Quinteiro, and Salazar 

2014) work.  

Through the experience and the study conducted, the Australian sheep 

appears to have the largest olfactory region in relation to its large head size 

in comparison with Roman and Domestic sheep. Therefore, the Australian 

sheep provides more tissue than other races.  

Out of distinction, the olfactory region was observed as a yellow region as it 

contains a carotenoid pigment, even that it is not distinguished clearly by its 

color, which was also observed by other research groups such as (Barrios, 

Quinteiro, and Salazar 2014). While the respiratory region notably appears 

as red to purple region as it is a highly vascularized region as appears in 

Figure 3.1. In addition, the olfactory nerve bundle, the trigeminal nerve 

bundle, and the ethmoid bone were clearly observed in the olfactory region 

during the work. 

Some research groups suggest one additional final step, which is delipidation 

of the tissue using chloroform or methanol such as (E. Karasulu et al. 2008), 
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notwithstanding that this step could cause a dramatic change on the 

absorption properties of the mucosa.   

Because of the limited availability of human nasal mucosa, which can be 

obtained from patients undergoing surgery for nasal obstruction (P. Pandey 

et al. 2017), the need for another species for nasal tissue donor arises, that is 

why variant of animals was studied as a model for nasal drug delivery study.  

Sheep is the best animal model that presents permeation and mucoadhesive 

proprieties similar to humans (Salade et al. 2019), as the study of the 

morphology and the histology of the sheep nasal mucosa shows it to be 

nearly identical to human nasal mucosa (Shaw et al. 2000). Sheep were used 

as a promising in-vivo model to deliver insulin to the brain (Silver, Carey, 

and Dueovi 1987).  
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Fig. 5.1. A) the olfactory and the respiratory region in the medial part of the sheep nasal cavity. 

B) the olfactory and the respiratory region of the lateral part of the sheep nasal cavity. 

 

Another study group reveals that dogs olfactory mucosa and the core of the 

olfactory nerve bundle appear to be thicker than sheep, since a blood 

vasculature was observed in the core of the olfactory nerve (Kavoi et al. 

2010).  
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Even that monkeys could be more representative as a model for human 

olfactory mucosa as it occupies around 5% of the nasal cavity and it contains 

similar enzymatic activity (Chamanza and Wright 2015), from the 

standpoints of  the cost, the controversy surrounding their use in 

experiments, and the use in a conscious state, in a comparison of the good 

correlation for the results obtained from the human and sheep, sheep is 

considered an excellent model (Illum 1996).  

Rabbits and rats, both showed a variety of results, widely different plasma 

profiles in comparison with a human volunteer for nasal administration, 

especially for drugs with absorption issues (Illum 1996). 

Overall, the sheep is the most suitable animal model for nasal ex-vivo and 

in-vivo study, for its availability, relatively low coast and good correlation 

for absorption, and mucoadhesive properties which also corresponded to 

(Illum 1996) and (Chamanza and Wright 2015) works.   

5.6. Nasal Patch preparation  

Nasal patch was prepared using gelation method based on a quick melting 

step as mentioned in section 3.9. The simplicity of this method makes it 

suitable for large scale production. 

Gelatin is a biocompatible, highly available, with low cost protein, which is 

derived from controlled hydrolysis of collagen (Loboa 2016). It is one of the 
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most popular fibrous proteins with excellent film-forming properties 

(Barbosa et al. 2021). The melting point of the gelatin matrix is similar to the 

body temperature (Liu et al. 2020; Tedesco, Monaco-lourenço, and Carvalho 

2016) Gelatin has thermo-reversible gel-forming properties around 35 ºC, 

which is considered a unique temperature as it is close to the body 

temperature (Babin and Dickinson 2001; Yavari et al. 2021).  

Generally, Hydroxypropylmethylcellulose (HPMC) is used as a coating 

agent, dispersing agent, emulsifying agent, emulsion stabilizer, film-

forming, foaming agent, granulation, solubilizing agent, tablet binder, 

thickening agent, stabilizing agent, and suspending agent. HPMC was used 

in this work for its modified-release, mucoadhesive, and viscosity-increasing 

properties (Rowe, Sheskey, and Quinn 2009).  

Both Gelatin and HPMC possess good film or gel-forming (matrix-forming) 

ability, chemical compatibility, great biocompatibility, biodegradability 

(Ding, Zhang, and Li 2015). 

Glycerol and PG were used mainly in this preparation as a plasticizer, 

preservative, emollient, humectant, and cosolvent (Rowe, Sheskey, and 

Quinn 2009).  

Since the olfactory nasal mucosa is considered as a sensitive region for 

containing the olfactory nerve, emollient and humectant properties for PG 

and glycerol consider important to preserve the nasal mucosal humidity and 
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to prevent drying. PG provides a dense, compact, smooth structure in the 

gelatin/HPMC film, properly due to the hydrogen bonding between PG and 

gelatin/HPMC, which decreases the interspace between gelatin and HPMC, 

thus increases the homogeneity and miscibility as it is described in Ding, 

Zhang and Li work which investigates the collagen/HPMC film behavior 

with and without PG. Therefore, adding PG to the formulas making it exhibit 

a uniform and reproducible results and suitable for large scale production 

(Ding, Zhang, and Li 2015).   

Glycerol was used in this formulation as a physical stabilizer. A research 

article by (Morsy et al. 2017) reported that incorporation of glycerol in 

gelatin-based formulations causes changes to its secondary structure, which 

was attributed to the formation of hydrogen bonds between the glycerol-

gelatin matrix. In the work presented herein, it was observed that increasing 

the amount of glycerol would result in a gel that is too viscous to be injected 

from the syringe. At lower concentrations, however, glycerol was found to 

increase the viscosity sufficiently to allow for a rigid matrix, without 

introducing difficulty in processing.  

The formulas were prepared from 10% (gelatin/HPMC) mixture and 90% 

(60% PG, glycerol 20%, water 20%). The initial formulations using different 

concentrations of HPMC were inspired from (Liu et al. 2020) work and the 

handbook for pharmaceutical excipient (Rowe, Sheskey, and Quinn 2009). 
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It was covering (2-8% W/W%) of HPMC (K15M) grade. The ratios of 

gelatin/HPMC in the formulas G1, G2, G3, and G4 w (8:2), (6:4), (4:6), and 

(2:8) respectively. It was observed that the low ratio of gelatin as G4 resulted 

in a formula with a loos physical consistency, which is not suitable for further 

investigation. On the other hand, the high ratio of gelatin as in G1 was 

observed to have a firm structure, which resulted in a difficulty in injecting 

the formula from the syringe. 

The best formulas observed in the term of physical properties were G2 and 

G3. Further investigation was performed to optimize the HPMC 

concentration in order to achieve the best adhesion. Each gelatin 

concentration was prepared with different HPMC concentration to get the 

formulas H1, H2, H3, H4, H5, H6, H7 and H8, which have the gelatin/HPMC 

concentrations of (6%-2%), (6%-3%), (6%-4%), (6%-5%), (4%-2%), (4%-

3%), (4%-4%), and (4%-5%) respectively. It was observed that all these 

fabricated formulas have a good physical consistency since it was governed 

mainly by gelatin. Based on that, these formulas were subjected to simple 

initial mucoadhesive test to choose the most suitable formula on the basis of 

adhesion. The nasal mucosa which was socked previously in mucin for 1 

hour was adhering on a glass rod. All formulas were aligned parallel to each, 

and the nasal mucosa was allowed to attach the formulas for 0.5 minute then 

it was pulled over. It was observed that there was no significant difference 
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in the adhesion in all these formulas. Based on that, we decided to choose 

the formulas that contain the least and the highest ratio of HPMC to gelatin 

which were H1 and H8. Furthermore, the same ratios of gelatin/HPMC were 

used with both grades of HPMC (K4M and K15M) to get 4 preparations F1, 

F2, F3, and F4 which their composition is illustrated in Table 3.1. These 

formulas were considered to be suitable for further investigation.   

Finally, every preparation was prepared in term of weight per volume to 

achieve the final nasal patch was considered per volume. It was considered 

that each 0.4 ml formula contains 4 mg of RvT. 

F1, F2, F3, and F4 were the best initially adhesive formulas visually, and 

suitable for further investigation.  

5.7. Nasal Patch Characterization  

5.7.1. Physical Appearance  

All patches appear to be colorless and transparent with a smooth surface with 

no visual difference between formulas (F1 – F4), as shown in Figure 4.7. As 

mentioned before PG and glycerol introduce smooth and dense structure for 

the formulas. Predictably, all formulas appear to be acceptable for patient 

administration for being clear and smooth (Tamasree Majumder, Gopa Roy 

Biswas, and Sutapa Biswas Majee 2016). Finally, all formulas appear to be 

odorless which is expected to be more suitable if we take into consideration 
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that the administration site of the formulas will be close to the olfactory 

nerves.  

5.7.2. Diameter and length 

The diameter and the length of all formulas were measured to estimate the 

symmetry of the nasal patch and the nasal cavity dimension, as represented 

in Table 4.14. The results for the length of all formulas were (23.0 ± 0.8 – 

23.6 ± 0.8) mm, which facilitates its introduction to the nasal cavity easily, 

since the nasal anatomy has about (120-90) mm length (Pandey et al., 2019) 

mm. It is estimated that the human olfactory region width is about 6 mm 

(Valtonen et al., 2020), therefore the diameter for all formulas (F1-F2) (4.7 

± 0.12 – 4.8 ±0.11) mm is considered suitable for human administration.  

5.7.3. pH determination of the patch Surface  

The surface pH of all formulas (F1 - F4) was estimated to predict the 

incidence of irritation after the application of the formula in the nasal cavity, 

as the pH of the normal nasal fluid is about ~6.5-5.5  (Salade et al. 2019). 

The surface pH was about 6 in all formulas, which resembles another group 

work (Tedesco, Monaco-lourenço, and Carvalho 2016) that observed a 

surface pH for gelatin/HPMC film between 6.21 and 6.73. Based on that, the 

surface pH of the formulas is considered acceptable and expected to induce 

no irritation. 



81 
 

 
 

5.7.4. Mechanical properties assessment 

The mechanical properties of film materials are important for their practical 

applications and for deeper understanding of their behavior. The interaction 

between polymers notably influences the mechanical properties of the 

blended polymers (Fan et al. 2007). 

5.7.4.1. % Elongation at break 

The % elongation at break is the percentage of length that increased just 

before breaking of patch occurs to the initial length, which is also known as 

fracture strain (Petroudy 2017). 

The % elongation at break test was performed to evaluate the elasticity and 

mechanical stability of each formula. The higher elongation of the formula, 

the more elasticity of it (Takeuchi et al. 2020), which is clearly represented 

in Figure 4.8. Formulas show an elongation behavior as F1> F3> F2> F4. It 

was noticed that the elongation of patches in the formulas which have low 

concentration of HPMC as in F1 and F3 (the percent elongation was 88.91% 

and 71.98%, respectively, and HPMC concentration was 1.9%), is affected 

by the length of HPMC chain, since F1 which was composed of the HPMC 

K4M grade which is shorter than the HPMC chain in F3 that was composed 

of HPMC K15M. Therefore, the shorter the chain length of HPMC, the 

higher elongation will be observed. This behavior refers to the plasticizing 
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effect of HPMC to the gelatin matrix, as HPMC polymer interrupts the 

gelatin-gelatin bond as it was illustrated in Figure 5.2. Generally, gelatin 

films exhibit high tensile strength. Increasing gelatin concentration increases 

the tensile strength, probably due to adjacent polymer interactions (Tedesco, 

Monaco-lourenço, and Carvalho 2016). The structure of HPMC may hinder 

the junction zones results of the gel formation (Tedesco, Monaco-lourenço, 

and Carvalho 2016). This reduces the cohesiveness of the formed polymer 

matrix. Notably,  it was found that myofibrillar proteins are relatively rich in 

a polar non-ionized amino acids, tat formulas numerous protein- protein 

hydrogen bonds resulting in low flexibility and high cohesion of 

unplasticized films. These bonds saturated in the use of high concentration 

of HPMC such as F2 and F4 (52.96 % ± 10.00 and 42.28 % ± 6.83), since 

the change of the elongation is not significant (Cuq, Gontard, and Cuq 1997). 

 

Fig. 5.2 A schematic representation of the mechanism for the HPMC/gelation film and the 

plasticizing effect of HPMC (Liu et al. 2020).  
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5.7.4.2. Tensile strength  

Tensile strength is the force needed to break material. The tensile strength 

test was performed to determine the maximum force that the patch can hold 

just before break or rupture (Malaiya et al. 2018). Tensile test results stress-

strain curve. As illustrated in Figure 4.9.(A), the stress–strain curve has a 

linear region at the initial part, which represents the elastic deformation. 

Then, it gradually loses its linearity, which represents the deformation from 

elastic behavior to plastic behavior. Finally, it reaches the maximum stress, 

followed by a slight decrease just before the rapid decrease stress which 

represented the breaking of the films. These features for the stress-strain 

curve determine that all formulas have a ductile behavior (Takeuchi et al. 

2020).  

According to Figure 4.9.(B), it was found that the tensile strength was in the 

order F1>F3>F2>F4. The tensile strength was higher in F1 (52.66 N) and F3 

(45.18 N), due to the high concentration of gelatin (5.6 % w/w) and low 

concentration of HPMC (1.9% w/w) in those formulas. On the other hand, 

when the same gelatin concentration was used as in F1 and F3 (5.6% w/w), 

or F2 and F4 (3.7% w/w) the tensile strength was affected mainly by the 

plasticizing effect of HPMC, since either increasing the concentration or the 

grade of HPMC resulted in a decrease in the tensile strength. It is noteworthy 

that these results are in a good agreement with the percent elongation results. 
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5.7.5. Mucoadhesive test 

Mucoadhesive tests was performed to evaluate the bio-adhesive force 

between nasal mucosa and the nasal patches (Laffleur 2018). Mucociliary 

clearance is the main limitation for the nasal drug delivery (Trotta et al. 

2018). Furthermore the mucoadhesive properties increases the residence, 

therefore increases the time allowed for absorption (Yarragudi et al. 2017). 

Mucoadhesion depends on various factors such as cohesiveness, swelling 

capacity, and mechanism of interaction between polymers and mucosa. 

Therefore, two mucoadhesive tests were performed on nasal mucosa under 

different conditions to have a deeper understanding of the mucoadhesion 

mechanism (Tangri and Madhav 2016).  

5.7.5.1. Detachment test 

The detachment test was performed to assess the mucoadhesive force of each 

formula just after the insertion at room temperature and under normal 

atmospheric pressure, as represented in Figure 4.10. Formulas ranking was 

following the order (F4 > F3 > F2 > F1), where F4 (6.69 g) results the 

maximum attachment, increasing both HPMC grade - chain length - and 

concentration obviously increases the detachment force of the patch, the 

adhesion mechanism was following the adsorption theory, for adhesion to 

begin the surface of the matrix should be wetted. Thus, the entanglement of 

the polymeric chain on the surface will be unwarp, resulting more chance to 
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interact with mucin and mucus, mainly by hydrogen bond and Van der Waals 

forces as shown in Figure 5.3. This concurs with the work of (Škrovánková, 

Mišurcová, and Machů 2012; Cook et al. 2017; Laffleur et al. 2018). 

 
Fig. 5.3: description for the adsorption theory and the regions of interaction between mucin 

protein and HPMC polymer at room temperature and under normal atmospheric pressure (Tangri 

and Madhav 2016). 

 

5.7.5.2. Falling liquid test  

The falling liquid test was performed to evaluate the mucoadhesive force and 

to determine the formulas' resistance to the mucociliary clearance sheer force 

between the formula and the nasal mucosa at 35 ºC which represents the 

normal temperature of the nasal cavity. Falling liquid apparatus was inspired 

from the work of other research groups (Carvalho et al., 2010; Prajapati 

Twinkle Kantibhai, 2015; Laffleur, 2018; Salade et al., 2019; Alexander et 

al., 2020), which was simulating the nasal mucocilliary clearance and the 

conditions in the nasal cavity. From the results shown in Figure 4.11, it was 

noticed that the detachment speed followed the rank of F1> F3> F4> F2. It's 

noteworthy that these results did not follow the detachment results' order, 
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which means obviously that changing the test's condition especially the 

temperature, resulted in a remarkable change in the mucoadhesive 

mechanism. The gelatin solution forms a reversibly cross-linked network 

that was held together by hydrogen bond. These bonds were affected by 

temperature, since it was stated in the work of (Babin and Dickinson, 2001) 

that the gelatin matrix started to lose its firm texture above 35 °C, as it starts 

to lose the hydrogen bond, and thus the triple helix conformation of gelatin. 

Therefore, the viscosity will decrease till the complete deformation of the 

triple helix occurred as illustrated in Figure 5.4. This transformation of the 

physical state increases the mobility of the HPMC in the gelatin matrix, since 

the mobility of HPMC is inversely related with the chain length and directly 

with the temperature. As a result, the mucoadhesive theory suggested in this 

behavior is mainly the diffusion theory, since the F2 formula had a high 

concentration of low grade – low molecular weight- HPMC, which gave it 

the best chance to diffuse to the surface and interact with the mucin in the 

SNF as it is explained in Figure 5.5 (Alipal et al. 2019; Babin and Dickinson 

2001; Tekade et al. 2019). 
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Fig. 5.4: The physical state of the gelatin solution according to the change of temperature, as the 

viscosity of the solutions a< b< c (Zhou et al. 2018). 
 

     
Figure 5.5: Scheme draw illustrates the diffusion and the adsorption theory for the ineraction 

between the mucin protein and HPMC polymer (Tekade et al. 2019). 

 

5.8. Content Uniformity  

Content uniformity of the patches was assessed to determine whether the 

theoretical amount individual patches is within the acceptance limits and to 

evaluate the distribution of the drug in the patches. As shown in Table 4.15, 

all formulas were uniform as the %RSD was in the range 0.97 % -1.33 %, 

and the assay was 98.9% - 100.3%. Since all values of RSD are not more 

than 2% and the assays are within (70-130)% of the targeted amount, all 

formulas are considered within the accepted limit according to chapter 

<1225> (The United States Pharmacopeial Convention 2021). 
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5.9. Release and ex-vivo permeation study  

The drug release from any dosage form is affected by several factors; the 

drug molecule, the formula composition, formulation prosses, and the media 

(Tahara, Yamamoto, and Nishihata 1996). The release study was assessed 

using three different apparatus; basket dissolution apparatus, Franze cell, and 

dialysis bag, in order to study the effect of the hydrodynamic environment 

(the media volume and stirring speed) on the release of the fabricated nasal 

patches. Thus, highlighting the polymer media interaction. In each apparatus 

different volumes of SNF were used, therefore, different release profile was 

observed, since in the basket dissolution apparatus it was found that the % 

released of RvT at 1 hour for the formulas F1, F2, F3, and F4 was 100%, 

65%, 100%, 85% respectively, while in the franze cell apparatus, the % 

released of RvT at 8 hours was 70.54%, 38.17%, 66.3%, and 53.2% 

respectively, and when using the dialysis bag for release evaluation, the % 

released of RvT at 8 hours was 84.9%, 54.5%, 71.1%, and 67.2% 

respectively. This difference ensures that the rate of the release is highly 

affected by the hydrodynamic environment. That was a confirmation that 

these formulas did not follow the zero-order kinetic model since this model 

defines the process of constant drug release only as function of time and the 

release takes place at a constant rate independent of active agent 

concentration from a drug delivery system.  
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In addition, it was noticed that all formulas exhibit a change in dimensions 

and size at temperature 35 °C in the presence of water as shown in Figure 

5.6. This observation assures that Higuchi model is not suitable to fit the 

release kinetics as it mainly fits the release that is governed mainly by 

Fickian diffusion. Fickian diffusion assumes no change in the dimensions of 

the membrane across the drug is diffusing (Bruschi 2015a). Seeing as the 

formula exhibits clear deformation throughout release, Fickian diffusion 

cannot be the mechanism through which drug is released. 

 
Fig. 5.6: The nasal patch shape after exposure to 35 °C. 

 

Furthermore, the first order model is not a suitable model (Bruschi 2015a), 

as it involves a constant rate of release, which is not observed in the formula 
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as the change in the size caused a change in the rate of drug release in the 

formula. 

As a result, these data indicate that RvT release from our fabricated nasal 

patches follows a hybrid mechanism, which is governed by swelling and 

erosion mainly.  

Drug release kinetics were investigated by fitting the data to the Korsmeyer-

Peppas model to calculate K and n values using Labplot2 (Version 2.0.8) 

software. The results are illustrated in Figure 4.14.  

It was found that the n value in the fabricated nasal patches between 0.5 and 

1 as illustrated in Table 4.17. It was observed also that the least n value was 

for F2 as it equals 0.65. When the n exponential value is deviated toward 0.5, 

the more diffusion mechanism will be predominant. While when the 

deviation is toward 0.89 the erosion mechanism will be predominant based 

on that diffusion mechanism is more predominant in F2. While the other 

formulas appeared to be deviated toward 0.89 this indicates that the erosion 

is the predominant mechanism in these formulas. The random distribution of 

the residual values as it is observed in Figure 4.15 and having SSR values 

for all models NMT 11.65, indicates a good fitting for the model. 

(Nasereddin et al. 2018). 

The permeation study was assessed using Franz cell apparatus, with a sheep 

nasal musoca as a membrane and SNF in the accepter compartment media to 
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evaluate the permeability of RvT. As illustrated in Figure 4.13, the 

permeation results of RvT were in the order of F1> F3> F4 >F2, which were 

in a great agreement with the release result.  

Statistical analysis of difference parameters such as cumulative amount of 

RvT per unit area (Q/A), steady state flux (Jss) and permeability coefficient 

(P) among predetermined interval between formulations was performed. 

Significant difference in these parameters between the formulas was 

observed except for the (Q/A). 

5.10. Stability Study 

The stability study was achieved to evaluate the chemical stability of RvT in 

the nasal patch and the physical stability of the nasal patches under long term 

storage (normal and accelerated) conditions. 

The content of 6 nasal patches from each formula for the same preparation 

was studied at previously determined time point: at the day of preparation, 

after one month, after three months, after six months. 

At the normal long-term storage conditions, RvT appeared to be stable in the 

nasal patch formulations and compatible with the excipient. 

The low degradation rate may be referred to the low concentration of water, 

therefore, low hydrolysis. The stability of the physical appearance was 

clearly observed.  
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At the accelerated storage conditions, RvT appeared to be stable in the nasal 

patch formulations, but the physical stability was not observed as a 

separation of HPMC and gelatin occurs, which could be referred to the low 

glass transition of gelatin as shown in Figure 5.4. 

5.11. Conclusion  

RvT analysis method was successfully validate in terms of selectivity, 

linearity, precision, recovery, robustness, and system suitability according to 

the ICH guidelines.  

It was observed that all formulated nasal patches have the same physical 

appearance and surface pH, where the dimensions of the nasal patches 

depend on the mold since changing the composition of polymers has no 

significant effect on the dimensions. The fabricated formulas F1, F2, F3, and 

F4 appeared to have different characteristics in term of mechanical properties 

as F1 and F3 show the best % elongation and tensile strength rendering it 

more suitable for patch handling. While F4 provided the best adhesion 

properties for the insertion of the nasal patch and F2 provided the best 

mucoadhesive characteristics in the nasal cavity conditions. The content for 

all formulas was uniform with no significant difference. The release of RvT 

from the fabricated nasal patches appears to follow a hybrid model as gelatin 

swells and HPMC dissolved. F2 formula appeared to have release profile 

that is more sustained and constant release. 
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After weighing the pros and cons and a deeper understanding to the full 

vision of the purpose of the dosage form, it was suggested that F2 is the most 

promising formula among all formulas. for being the most adhesive formula 

in the nasal condition as the mucocilliary clearance is the main challenge for 

the nasal drug delivery and for it is sustained release profile.     

Nasal patches were fabricated for the first time for nose-to-brain delivery of 

rivastigmine. The optimized HPLC method for rivastigmine analysis was 

validated according to ICH guideline. The fabricated formulas were 

successfully examined in terms of mechanical properties, physical 

appearance, dimension measurements, surface pH, mechanical properties, 

mucoadhesive properties, content uniformity, release and permeation, based 

on that F2 formula appeared to be a promising formula which was 

successfully provided the best characteristics to be suitable for further in-

vivo study.  
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5.12. Further work  

The nasal drug delivery is a promising and interesting area for research. We 

would recommend studying a dissolution apparatus that could suit the large-

scale production and further in-vivo study for formulas. We would 

recommend studying an apparatus that mimics all the nasal condition in-

vitro. Nasal drug delivery could provide a solution many CNS disorders 

especially the chronic diseases and meningitis. More studies could serve 

elderly, kids, unconscious, and pregnant patients. Additionally, nasal drug 

delivery could be an effective route to avoid many drug-drug interactions 

and drug-food interactions. 
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 صياغة وتقييم لرقعة انف لإيصال الدواء من الانف إلى الدماغ لمادة الريفاستيجمين

 إعداد

 لينا شغليل

 المشرف

 الدكتور أنس أديب الشيشاني

 المستخلص

يؤدي إلى تجاوز الحاجز الدموي الدماغي من خلال منطقة  الدماغتوصيل الأدوية من الأنف إلى 

حاسة الشم باستخدام أجهزة وأشكال صيدلانية مختلفة. نهدف في هذا العمل إلى تصنيع وتحليل شكل 

ريفاستيجمين الصيدلاني جديد )لصقة أنفية( يحتوي على ريفاستيجمين. تم تطوير طريقة التحليل 

والتحقق من صحتها. تم تصنيع أربع رقع أنفية باستخدام الجيلاتين / هيدروكسي ميثيل سيليلوز بنسب 

ودرجات مختلفة. تم فحص البقع الأنف المصنعة من حيث المظهر الخارجي، درجة الحموضة 

أيضًا  ي. تموسلوك الالتصاق مع السائل المخاط الميكانيكية،السطحية، القطر والطول، الخصائص 

فحص توحد المحتوى ونمط الإطلاق والعبور للريفاستيجمين ترترات. تم مطابقة أنماط الإطلاق 

تم أيضًا فحص الثبات المادي للشكل  أخيرًا،لجميع بقع الأنف على نماذج الخواص الحركية. 

متلك أفضل حيث إنها ت واعدة،كأنها تركيبة  F2 الصيدلاني وللريفاستيجمين ترترات. بدت الصيغة

 .نمط إطلاق مستدام مع أفضل سلوك التصاق ومرونة ومظهر مقبول

 

 

 ف،الأنتيجمين، لصقة سالأنف إلى الدماغ، ريفا الأنفية،الكلمات المفتاحية: توصيل الأدوية 

 الجيلاتين، هيدروكسي ميثيل.


