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ABSTRACT 

 

 

In this thesis we study laminar boundary layer magneto hydrodynamic flow of an 

incompressible, viscous and electrically conducting fluid over a stretching sheet embedded 

in a porous medium taking into account the effects of Hall current in the presence of heat 

source. The equations of motion and heat transfer are transferred to non-dimensional 

system of ordinary differential equations that are solved numerically using mathematic 

software. The effects of various parameters on the velocity and temperature profiles are 

discussed and presented graphically using Harvard software. 
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Chapter One 

Introduction 

1.1 Overview 

The study of the behavior of the boundary layer over stretching sheet occurs in many 

engineering applications and Manufacturing processes in the industry, such as, cooling of 

metallic plates and boundary layer flow over heat treated materials between feed roll and a 

windup roll, rolling and manufacturing of plastic films, and the aerodynamic extrusion of 

plastic sheets, manufacture of plastic and rubber sheets. Extension will bring in 

unidirectional orientation to a pop-up, and thus the quality of the final product largely 

depends on the flow and heat transfer mechanism. To this end, the analysis of momentum 

and heat transfer fluid within the liquid on a continuously stretching surface is important to 

acquire some basic understanding of these processes. Sakiadis [1-2] pioneered the study of 

boundary layer flow over a continuous solid surface moving with constant velocity. 

Because of the importance of the boundary layer flow over stretching surface, various 

aspects have been investigated by many authors and they have published several papers on 

the flow and heat transfer problems for stretching surfaces. Such as  Dutta et al. [4] and 

Grubka and Bobba [5] studied the temperature field in the flow over a stretching surface 

subject to a uniform heat flux. Elbashbeshy [6] considered the case of a stretching surface 

with variable surface heat flux. Chen and Char [7] presented an exact solution of heat 

transfer for a stretching surface with variable heat flux. P. S. Gupta and A. S. Gupta [8] 

examined the heat and mass transfer for the boundary layer flow over a stretching sheet 

subject to suction and blowing.                                                         
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Aboeldahab and Salem [9] investigated the effects of magnetic field, convective and 

radiative heat transfer on flow over a stretching surface with heat and mass transfer. Hinze 

[10] studied turbulent fluid motion in an irregular condition of flow; and showed that 

various quantities exhibited a random variation with time and space coordinates. Abo-

eldahab and El-Gendy [11] studied the radiation effect on connective heat transfer in an 

electrically conducting fluid at a stretching surface with variable viscosity and uniform free 

steam. They showed that the flow characteristics are markedly affected by the variation of 

viscosity with temperature. 

All these authors have studied the flow through non porous medium and neglected the 

effect of internal heat generation. The flow through Porous Media series is aimed at 

engineers and scientists who work and perform research in a wide variety of disciplines 

involving transport of matter and energy in porous media. This includes Civil Engineering, 

Hydrology, Mechanical Engineering, Chemical Engineering, Material Engineering, Food 

Industry, Petroleum Engineering, Agricultural Engineering, Biomedical Engineering, and 

Geothermal Engineering, to mention but a few. Fluid-filled porous media are ubiquitous in 

many natural and industrial systems. The working of these systems is controlled and/or 

affected by the movement of fluids, solutes, particles, electrical charges, and heat through 

them. Examples of natural porous media and corresponding processes are the flow of oil, 

gas, and water in oil reservoirs; the potential mobilization of methane in gas hydrates; the 

flow of Non-Aqueous Phase Liquids (NAPLs) in contaminated aquifers; the storage of 

CO2, nuclear waste, other hazardous wastes, and heat in the subsurface; the flow of fluids 

and solutes in biological tissues; and melting and metamorphism of snow. Examples of 

industrial porous media and corresponding processes are the drying of paper pulp, the 

absorbing of liquids in diapers and similar absorbing products, gas and water management 
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in fuel cells, and the drying of foods, as well as water and solute movement in building 

materials, detergent tablets, textiles, foams, coatings, paper, and filters. Many physical, 

chemical, thermal, and biological processes (such as fluids flow, diffusion, capillarity, 

dissolution, absorption, clogging, degradation, shrinkage, swelling, fracturing, and flow of 

electrical charges) occur in these materials. For the design, operation, and maintenance of 

porous media systems, it is extremely important to understand these processes, describe 

them quantitatively (by mathematical models) and simulate them. Porous media processes 

are observed, studied, and modeled at a wide range of scales, from nano to micro scales, 

through the laboratory scale, to the field scale. Understanding above-mentioned transport 

phenomena, experimental studies of them, Theory and Applications of Transport in Porous 

Media and modeling them at different scales, as well as coping with the uncertainties that 

are inherent in such models. There is extensive literature on flow through porous media. 

There is extensive literature on flow through porous media that is governed by the 

generalized Darcy’s law. For instance Yamamoto and Iwamura [12] investigated boundary 

layer flow of a Newtonian fluid through a highly porous medium. Later Raptis et a l[13]  

used these equations to study the influence of free convective flow and mass transfer on 

flow through a porous medium. Raptis and Perdikis [14] investigated oscillatory flow of a 

Newtonian fluid through a porous medium. 

 Vajravelu el [15] studied the heat transfer  characteristics in laminar boundary layer of 

viscous fluid over a stretching sheet with viscous dissipation or frictional heating and 

internal heat generation. Abel et al [16] studied connective heat and mass transfer in 

viscoelastic fluid flow through a porous medium over a stretching sheet with variable 

viscosity. Bhargava el al.[17 ] has taken the problem of mixed convection micropolar fluid 

driven by a porous stretching sheet and found the solution by finite element method. 
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Rashad [18 ] has studied the radiative effects on heat transfer from a stretching surface in a 

porous medium .Kumar[19] considered radiative heat transfer with hydromagnetic flow and 

viscous dissipation over a stretching surface in the presence of variable heat flux. However 

, in an ionized fluid where the density is low thereby magnetic field intensity is very strong 

, the conductivity normal to the magnetic field is reduced due to spiraling of electrons and 

ions about the magnetic lines of force before collisions take place and current induced in 

direction normal to both the electric and magnetic fields.  This phenomena is known as Hall 

effect. Watanabe and Pop [20] investigated the magneto hydrodynamic (MHD) boundary-

layer flow over a continuously moving semi-infinite flat plate by taking into account the 

Hall currents. Aboeldahab [21] and Aboeldahab and Elbarbary [22] studied the Hall current 

effects on MHD free-convective flow past a vertical plate with mass transfer. Shit [23] 

investigated the Hall effects on MHD free convective flow and mass transfer over a 

stretching sheet in the presence of chemical reaction. Fakhar et al. [24] studied the Hall 

effects on the unsteady magneto hydrodynamic (MHD) flow of a third grade fluid without 

considering the heat and mass transfer phenomena. The effect of Hall currents on the steady 

MHD flow of Berger’s fluid between two parallel electrically insulating infinite planes was 

carried out by Rana et al. [25]. Mandal [26]and Grosh [27] investigated effects of Hall 

current on MHD coquette flow between parallel plates in rotating system , Jana et al  [28 ] 

analyzed the Hall effect in steady flow past an infinite porous flat plate .Abd El-Aziz [29] 

investigated the effect of Hall currents on the flow currents on the flow and heat transfer of 

an electrically conducting fluid over an unsteady stretching surface in the presence of a 

strong magnet .Aboeldahab and El Aziz [30]  investigated the Hall current and Joule 

heating effects on electrically conducting fluid past a semi – infinite plate with strong 

magnetic field and heat generation /absorption. Jaber [31] studied the effect of Hall 
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currents, radiation and variable viscosity on free connective flow past a semi – infinite 

continuously stretching plate , Jaber [32 ] studied the effect of Hall currents and variable 

fluid properties on MHD flow past a continuously stretching vertical plate in the presence 

of radiation. Jaber [33] studied the influence of Hall currents and viscous dissipation on 

MHD in a vertical porous channel rotates with a uniform angular velocity Ω about the axis 

normal to the plates. Now we purpose to study the effects of Hall currents and analyze the 

combined effects of various parameters on the velocity and the temperature.  

 1.2 Research Objectives: 

1) Study the effect of internal heat generation or absorption.  

2) Convert the partial differential equations of the governing equations into dimensionless 

nonlinear ordinary differential equations. 

3) Study the effect of the magnetic field, Hall and heat source/sink parameters on the 

velocity and temperature fields. 
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1.3 Applications                                                                                         

The study of Magneto hydrodynamic (MHD) flow through porous media is of fundamental 

importance in a wide range of disciplines, including natural sciences and technology. 

In Geophysics, the fluid core of the Earth and other planets is theorized to be a huge 

MHD dynamo that generates the Earth's magnetic field due to the motion of the molten 

rock. Such dynamos work by stretching magnetic field lines that thread through turbulent or 

sheared flows in a conductive fluid: the total length of magnetic field line in a particular 

volume determines the strength of the magnetic field, so stretching the field lines increases 

the magnetic field. MHD was originally applied to astrophysical and geophysical problems, 

where it is still very important, but more recently to the problem of fusion power, where the 

application is the creation and containment of hot plasmas by electromagnetic forces, since 

material walls would be destroyed. Astrophysical problems include solar structure, 

especially in the outer layers, the solar wind bathing the earth and other planets, and 

interstellar magnetic fields. The primary geophysical problem is planetary magnetism, 

produced by currents deep in the planet, a problem that has not been solved to any degree 

of satisfaction. In engineering, MHD is related to engineering problems such as plasma 

confinement, liquid-metal cooling of nuclear reactors, and electromagnetic casting (among 

others). 

In early 1990s, Mitsubishi built a boat, the 'Yamato', which uses a magneto hydrodynamic 

drive, is driven by a liquid helium-cooled superconductor, and can travel at 15 km/h. 

MHD power generation fueled by potassium-seeded coal combustion gas showed potential 

for more efficient energy conversion (the absence of solid moving parts allows operation at 

higher temperatures), but failed due to cost prohibitive technical difficulties.  
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 In civil and agricultural engineering, knowledge of flows through porous media is applied 

in the efficient layout of drainage systems for irrigation, and in the recovery of swampy 

areas. In geotechnical engineering and soil physics, studies of flows through porous media 

are used in predicting the water movement in clays and other surface‐active soils. The 

chemical engineers and ceramic engineers may make use of the filtration and seepage 

properties of the porous materials used. The general equations governing MHD flow over a 

stretching surface embedded in a porous medium, which include the equation of 

conservation of mass, the equation of momentum, the equation of conservation of energy, 

are given in chapter 3. 
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Chapter Two 

Preliminary Concepts 

 

Fluid flow is an important part of many processes, including transporting materials from 

one point to another, mixing of materials, and chemical reactions. In this chapter we will 

introduce flow and explore concepts that effect on flow and use it in our equations. 

2.1 What Is Flow? 

The movement of liquids and gases is generally referred to as "flow," a concept that 

describes how fluids behave and how they interact with their surrounding environment 

for example, water moving through a channel or pipe, or over a surface. Flow can be 

either steady or unsteady, If all properties of a flow are independent of time, then the flow 

is steady; otherwise, it is unsteady. That is, steady flows do not change over time. An 

example of steady flow would be water flowing through a pipe at a constant rate. On the 

other hand, a flood or water pouring from an old-fashioned hand pump is example of 

unsteady flow. 

Flow can also be either laminar (A mode of flow in which the fluid moves in layers along 

continuous, well-defined lines known as streamlines). Or turbulent (an irregular, 

disorderly mode of flow). Laminar flows are smoother, while turbulent flows are more 

chaotic. One important factor in determining the state of a fluid’s flow is its viscosity, or 

thickness, where higher viscosity increases the tendency of the flow to be laminar.  

Laminar flow is desirable in many situations, such as in drainage systems or airplane 

wings, because it is more efficient and less energy is lost. Turbulent flow can be useful 

for causing different fluids to mix together or for equalizing temperature.   
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However, such flows can be very difficult to predict in detail, and distinguishing between 

these two types of flow is largely intuitive. 

2.1.1 Liquid Flow: 

The study of liquid flow is called hydrodynamics. While liquids include all sorts of 

substances, such as oil and chemical solutions, by far the most common liquid is water 

and most applications for hydrodynamics involve managing the flow of this liquid. 

That includes flood control, operation of city water and sewer systems, and management 

of navigable waterways. 

Hydrodynamics deal primarily with the flow of water in pipes or open channels. Geology 

professor John Southard's lecture notes from an online course, "Introduction to Fluid 

Motions" (Massachusetts Institute of Technology, 2006), outline the main difference 

between pipe flow and open-channel flow: "flows in closed conduits or channels, like 

pipes or air ducts, are entirely in contact with rigid boundaries," while "open-channel 

flows, on the other hand, are those whose boundaries are not entirely a solid and rigid 

material." He states, "Important open-channel flows are rivers, tidal currents, irrigation 

canals, or sheets of water running across the ground surface after a rain." 

Due to the differences in those boundaries, different forces affect the two types of flows. 

According to Scott Post in his book, "Applied and Computational Fluid Mechanics," 

(Jones & Bartlett, 2009), "While flows in a closed pipe may be driven either by pressure 

or gravity, flows in open channels are driven by gravity alone." The pressure is 

determined primarily by the height of the fluid above the point of measurement. For 

instance, most city water systems use water towers to maintain constant pressure in the 
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system. This difference in elevation is called the hydrodynamic head. Liquid in a pipe can 

also be made to flow faster or with greater pressure using mechanical pumps.   

2.1.2 Gas Flow: 

The flow of gas has many similarities to the flow of liquid, but it also has some important 

differences. First, gas is compressible, whereas liquids are generally considered to be 

incompressible. In "Fundamentals of Compressible Fluid Dynamics" (Prentice-Hall, 

2006), author P. Balachandran describes compressible fluid, stating, "If the density of the 

fluid changes appreciably throughout the flow field, the flow may be treated as a 

compressible flow." Otherwise, the fluid is considered to be incompressible. Second, gas 

flow is hardly affected by gravity.  

The gas most commonly encountered in everyday life is air; therefore, scientists have 

paid much attention to its flow conditions. Wind causes air to move around buildings and 

other structures, and it can also be made to move by pumps and fans.  

One area of particular interest is the movement of objects through the atmosphere. This 

branch of fluid dynamics is called aerodynamics, which is "the dynamics of bodies 

moving relative to gases, especially the interaction of moving objects with the 

atmosphere," according to the American Heritage Dictionary. Problems in this field 

involve reducing drag on automobile bodies, designing more efficient aircraft and wind 

turbines, and studying how birds and insects fly. 
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2.2 Viscosity: 

2.2.1 Viscosity Definition: 

 The viscosity of a fluid is a measure of its resistance to gradual deformation by shear 

stress or tensile stress; it corresponds to the informed concept “thickness”. A fluid with a 

low viscosity is said to be "thin," while a high viscosity fluid is said to be "thick." It is 

easier to move through a low viscosity fluid than a high viscosity fluid. As a simple 

example; syrup has a much higher viscosity than water: more force is required to move a 

spoon through a jar of syrup than in a jar of water because the syrup is more resistant to 

flowing around the spoon. This resistance is due to the friction produced by the fluid’s 

molecules and affects both the extent to which a fluid will oppose the movement of an 

object through it and the pressure required to make a fluid move through a tube or pipe. 

Viscosity is affected by a number of factors, including the size and shape of the 

molecules, the interactions between them, and temperature. Most common fluids, called 

Newtonian fluids, have a constant viscosity. There is a greater resistance as you increase 

the force, but it's a constant proportional increase. In short, a Newtonian fluid keeps 

acting like a fluid, no matter how much force is put into it. 

 In contrast, the viscosity of non-Newtonian fluids is not constant, but rather varies 

greatly depending on the force applied. A classic example of a non-Newtonian 

is Oobleck(is one of the easiest types of slime you can make. It normally behaves like a 

liquid or jelly, but if you squeeze it in your hand, it will seem like a solid.), which 

exhibits solid-like behavior when a large amount of force is used on it. Another type 

of non-Newtonian fluid are known as magnetorheological fluids, which respond to 
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magnetic fields by becoming nearly solid but reverting to their fluid state when removed 

from the magnetic field. 

2.2.2 Kinematic Viscosity: 

The kinematic viscosity is another way to look at the viscosity which means:  property of 

liquids and gases that represents how easily a given substance can flow. In practical 

terms, it is closely related to how thick the substance is. Both absolute and kinematic 

viscosity change according to temperature. The reason for this new definition is that some 

experimental data are given in this form. To obtain kinematic viscosity ߥ, the absolute 

viscosity µ of a substance is divided by its density ߩ: 

ߥ                                             = ఓ
ఘ
                                  (2.1) 

Absolute viscosity, also called dynamic viscosity, measures a substance's resistance to 

flow. It is determined experimentally by sandwiching a liquid or gas between two plates 

and applying a known amount of pressure to move the top plate .The dynamic viscosity 

depends on the pressure, the amount of time it was applied, and the distance the plate 

moved in that time. Dynamic or absolute viscosity is based on the International System of 

Units (SI) units of Pascal-seconds (Pa*s), which means that if a pressure of 1 Pa is 

applied for 1 second, the plate will move the same distance as the distance between the 

two plates. Centipoise (cP) is also a common unit for dynamic viscosity , 1 cP is the 

viscosity of water around room temperature. 

Density measures the mass of a substance relative to its volume, which means that it has 

units of mass per volume. The units are kg/m^3 in SI units or slugs/ft^3 in imperial units. 

Density can be understood by comparing it to weight — a piece of a denser material will 

weigh more than the same-size piece of a less dense material. 
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Since kinematic viscosity is dynamic viscosity divided by density, it has units of square 

meters per second (m^2/s) in the SI system or square feet per second (ft^2/s) in the 

imperial system. As for absolute viscosity, the imperial units are almost never used. 

Heat affects material properties, so both types of viscosity change at higher temperatures. 

When a liquid is heated, it flows more easily and thus the viscosity decreases. Kinematic 

viscosity is somewhat less affected than absolute viscosity, as heat also reduces the 

density because molecules move farther apart as a substance is heated. The viscosity of 

gases increases at higher temperatures as a gas expands; it exerts more pressure on the 

plate, making it harder to move. 

2.3: Magnetic Field: 

2.3.1: Magnetic Field Basics: 

Magnetic fields are different from electric fields. Although both types of fields are 

interconnected, they do different things. The idea of magnetic field lines and magnetic 

fields was first examined by Michael Faraday and later by James Clerk Maxwell. Both of 

these English scientists made great discoveries in the field of electromagnetism.  

Magnetic fields are areas where an object exhibits a magnetic influence. The fields affect 

neighboring objects along things called magnetic field lines. A magnetic object can 

attract or push away another magnetic object. We also need to remember that magnetic 

forces are not related to gravity. The amount of gravity is based on an object's mass, 

while magnetic strength is based on the material that the object is made of. If you place 

an object in a magnetic field, it will be affected, and the effect will happen along field 

lines. Many classroom experiments watch small pieces of iron (Fe) line up around 

magnets along the field lines. Magnetic poles are the points where the magnetic field 
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lines begin and end. Field lines converge or come together at the poles. You have 

probably heard of the poles of the Earth. Those poles are places where our planets field 

lines come together. We call those poles north and south because that's where they're 

located on Earth. All magnetic objects have field lines and poles. It can be as small as an 

atom or as large as a star.  

2.3.2  Attracted and Repulsed 

We know about charged particles. There are positive and negative charges. You also 

know that positive charges are attracted to negative charges. A French scientist 

named Andre-Marie Ampere studied the relationship between electricity and magnetism. 

He discovered that magnetic fields are produced by moving charges (current). And 

moving charges are affected by magnets. Stationary charges, on the other hand, do not 

produce magnetic fields, and are not affected by magnets. Two wires, with current 

flowing, when placed next to each other, may attract or repel like two magnets. It all has 

to do with moving charges. 

 Often the magnetic field is defined by the force it exerts on a moving charged particle. It 

is known from experiments in electrostatics that a particle of charge q in an electric 

field experiences a force F = qE. However, in other situations, such as when a charged 

particle moves in the vicinity of a current-carrying wire, the force also depends on the 

velocity of that particle. Fortunately, the velocity dependent portion can be separated out 

such that the force on the particle satisfies the Lorentz force law, 

F = q[E + (v⨉B)]                                                           (2.2) 
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Here v is the particle's velocity and × denotes the cross product. The vector B is termed 

the magnetic field, and it is defined as the vector field necessary to make the Lorentz 

force law correctly describe the motion of a charged particle. The unit of B is 

(newton·second)/(coulomb·metre) 

2.4 Hall Current: 

The Hall effect is the production of a voltage difference (the Hall voltage) across 

an electrical conductor, transverse to an electric current in the conductor and a magnetic 

field perpendicular to the current. It was discovered by Edwin Hall in 1879.  

The Hall coefficient is defined as the ratio of the induced electric field to the product of 

the current density and the applied magnetic field. It is a characteristic of the material 

from which the conductor is made, since its value depends on the type, number, and 

properties of the charge carriers that constitute the current. 

2.4.1 Theory: 

The Hall Effect is due to the nature of the current in a conductor. Current consists of the 

movement of many small charge carriers, typically electrons, holes, ions or all of the 

three. When a magnetic field is present, these charges experience a force, called 

the Lorentz force. When such a magnetic field is absent, the charges follow 

approximately straight, 'line of sight' paths between collisions with impurities, phonons, 

etc. However, when a magnetic field with a perpendicular component is applied, their 

paths between collisions are curved so that moving charges accumulate on one face of the 

material. This leaves equal and opposite charges exposed on the other face, where there is 

a scarcity of mobile charges. The result is an asymmetric distribution of charge density 
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across the Hall element, arising from a force that is perpendicular to both the 'line of 

sight' path and the applied magnetic field. The separation of charge establishes an electric 

field that opposes the migration of further charge, so a steady electrical potential is 

established for as long as the charge is flowing. 

In classical electromagnetism electrons move in the opposite direction of the 

current  (by convention "current" describes a theoretical "hole flow"). In some 

semiconductors it appears "holes" are actually flowing because the direction of the 

voltage is opposite to the derivation below. 

For a simple metal where there is only one type of charge carrier(electrons) the Hall 

voltage Vୌ can be derived by using the Lorentz force and seeing that in the steady-state 

condition charges are not moving in the y-axis direction because the magnetic force on 

each electron in the y-axis direction is cancelled by an y-axis electrical force due to the 

buildup of charges. The v௫ term is the drift velocity of the current which is assumed at 

this point to be holes by convention. The v௫ܤ௭   term is negative in the y-axis direction by 

the right hand rule.  

F =q [E +( v ⨉ B)]. 

0 = E௬ି v௫ܤ௭   where ܧ௬   is assigned in direction of y-axis . 

In wires, electrons instead of holes are flowing, so v௫ୀ ି v௫  and ݍ =                                                              ݍ −

௬ܧ  =
−vு

ݓ
 (2.3) 

Substituting these changes gives                                                                   
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 ுܸୀ v௫ܤ௭w  (2.4) 

The conventional "hole" current is in the negative direction of the electron current and the 

negative of the electrical charge which gives ܫ௫ =  where n is charge   (݁−)(v௫−) ݓݐ݊ 

carrier density, ݐ௪ is the cross-sectional area, and -e is the charge of each electron. 

Solving for w and plugging into the above gives the Hall voltage: 

        ுܸ = ୍ೣಳ೥
௡୲ୣ

                                                       (2.5) 

If the charge build up had been positive (as it appears in some semiconductors), then 

the ுܸ  assigned in the image would have been negative (positive charge would have 

built up on the left side). 

The Hall coefficient is defined as 

             
Rு =

௬ܧ

݆௫஻೥

 
(2.6) 

Where j is the current density of the carrier electrons, and E௬ is the induced electric field. 

In SI units, this becomes                          

 
Rୌ =

௬ܧ

݆௫஻೥

=
ݐ ுܸ

ܤܫ =
1

−݊௘
 

(2.7) 

 

(The units of RH are usually expressed as m3/C, or Ω·cm/G, or other variants.) As a 

result, the Hall effect is very useful as a means to measure either the carrier density or the 

magnetic field.[34] 
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One of the most important features of the Hall Effect is that it differentiates between 

positive charges moving in one direction and negative charges moving in the opposite. 

The Hall effect offered the first real proof that electric currents in metals are carried by 

moving electrons, not by protons. The Hall effect also showed that in some substances 

(especially p-type semiconductors), it is more appropriate to think of the current as 

positive "holes" moving rather than negative electrons. A common source of confusion 

with the Hall Effect is that holes moving to the left are really electrons moving to the 

right, so one expects the same sign of the Hall coefficient for both electrons and holes. 

This confusion, however, can only be resolved by modern quantum mechanical theory of 

transport in solids. [35] 

The sample inhomogeneity might result in spurious sign of the Hall Effect, even in 

ideal van der Pauw configuration of electrodes. For example, positive Hall effect was 

observed in evidently n-type semiconductors. Another source of artifact, in uniform 

materials, occurs when the sample's aspect ratio is not long enough: the full Hall voltage 

only develops far away from the current-introducing contacts, since at the contacts the 

transverse voltage is shorted out to zero. 

2.5 Magneto Hydrodynamics (MHD): 

(Magneto fluid dynamics or hydro magnetics) is the study of the magnetic properties 

of electrically conducting fluids. Examples of such magneto-fluids include plasmas,  

liquid metals, and salt water or electrolytes. The word magneto hydrodynamics (MHD) is 

derived from magneto- meaning magnetic field, hydro- meaning water, 

and dynamics meaning movement. The field of MHD was initiated by Hannes 

Alfvén, for which he received the Nobel Prize in Physics in 1970. 
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The fundamental concept behind MHD is that magnetic fields can induce currents in a 

moving conductive fluid, which in turn polarizes the fluid and reciprocally changes the 

magnetic field itself. The set of equations that describe MHD are a combination of 

the Navier-Stokes equations of fluid dynamics and Maxwell's equations of 

electromagnetism. These differential equations must be solved simultaneously, either 

analytically or numerically. 

2.6 Heat Flux: 

Heat Flux is the rate of heat energy that passes through a surface. The SI derived unit of 

heat rate is joule per second, or watt. Heat flux density is the heat rate per unit area. 

In SI units, heat flux density is measured in [W/m2]. Heat rate is a scalar quantity, while 

heat flux is a vectorial quantity. To define the heat flux at a certain point in space, one 

takes the limiting case where the size of the surface becomes small. 

 Heat fluxes are everywhere. Some examples are: 

 Getting cold feet from standing on a cold floor: since the floor has a lower 

temperature than the feet, heat flows from the feet to the floor. 

 Standing close to a fire feels hot: the temperature of a fire is much higher than the 

surrounding air. Therefore, heat radiates from the fire to the surroundings. 

 Feeling hot in a sauna: since the air temperature in a sauna is higher than the 

body’s temperature, heat flows from the air into the body. 

2.6.1 Types of Heat Transport: 

In order for heat flux to exist, it requires, not only a temperature difference, but also a 

medium through which heat is flowing. Heat can flow through solid materials (in which 
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case it is called conduction), through gases and liquids (which is called convection) and 

through electromagnetic waves (which is called radiation). 

Examples of conductive heat flux are (through solid materials): 

 Touching a hot cup of coffee 

 Thermal influences in precision instruments.  

 Measurement of heat output from chemical reactors. 

Examples of convective heat flux are (through liquids and gases): 

 Feeling much colder when it is windy. 

 Feeling much colder in water of 25°C than in air of 25°C. 

 Sensing principle in heat flux based mass flow sensors. 

Examples of radiation heat flux are (electromagnetic waves): 

 Cooking food in solar oven. 

 Feeling the heat from camp fire. 

2.6.2: Relationship Between Heat Flow & T Gradient: Fourier’s Law: 

The rate of heat flow is proportional to the difference in heat between two bodies. A thin 

plate of thickness z with temperature difference ∆T experiences heat flow Q [36]:  

 Q = −K
ΔT
z

 
(2.8)                                                                

where k is a proportionality constant called the thermal conductivity (J/msK): 



21 
 

We can express the above equation as a differential by assuming that z→0:  

                                                   Q(z) = −K ப୘
ப୸

                                                  (2.9) 

 (We use a minus sign because heat flows from hot to cold and yet we want positive T to 

correspond to positive x, y, z.) 

 In other words, the heat flow at a point is proportional to the local slope of the T–z curve  

 If the temperature is constant with depth (∂T/∂z = 0), there is no heat flow—of course! 

Moreover, if ∂T/∂z is constant (and nonzero) with depth (T(z)=T୸଴ + mz), the heat flow 

generalized to 3D, the relationship between heat flow and temperature is: 

 
Q = −k∆T = −k (

߲ܶ
ݔ߲

 +
߲ܶ
ݕ߲

 +
߲ܶ
ݖ߲

 ) 
(3.10) 

i.e., the heat flow at a point is proportional to the local temperature gradient in 3D. 

Of course, if the heat flow is not constant with depth, the temperature must be changing. 

The temperature at any point changes at a rate proportional to the local gradient in the 

heat flow: 

 ߲ܶ
ݐ߲

=  − 
1

௣ܥߩ
 
߲ܳ
ݖ߲

 
(2.11) 

 

So, if there is no gradient in the heat flow ( డொ
 డ௭

= 0), the temperature does not change. If 

we then stuff the equation defining heat flow as proportional to the temperature gradient 
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(Q = −k డ்
డ௭

 )  into the equation expressing the rate of temperature change as a function 

of the heat flow gradient (
డ்
డ௭

  and 
డொ
డ௭

), we get the rate of temperature change as a 

function of the curvature of the temperature gradient (perhaps more intuitive than the 

previous equation): 

 ߲ܶ
ݐ߲

 =   
݇

௣ܥߩ

߲ଶܶ
ଶݖ߲  

(2.12) 

And, in 3D, using differential operator notation (ߘଶ is known as ‘the Laplacian’): 

డ்
డ௧

= ௞
ఘ஼೛

 ଶܶ                                                          (2.13)ߘ

 

This is the famous ‘diffusion equation, it can be expressed most efficiently as: 

                                                 డ்
డ௧

= κ ߘଶܶ                                                         (2.14)                                   

where κ is the thermal diffusivity: 

ߢ = ௞
ఘ஼೛

                                            (2.15) 
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2.7 Remark: 

Heat transfer occurs at a lower rate across materials of low thermal conductivity than 

across materials of high thermal conductivity. Correspondingly, materials of high thermal 

conductivity are widely used in heat sink applications and materials of low thermal 

conductivity are used as thermal insulation. The thermal conductivity of a material may 

depend on temperature. The reciprocal of thermal conductivity is called thermal 

resistivity. 

Thermal conductivity is actually a tensor, which means it is possible to have different 

values in different directions.  

There are a number of ways to measure thermal conductivity. Each of these is suitable for 

a limited range of materials, depending on the thermal properties and the medium 

temperature. There is a distinction between steady-state and transient techniques. 

In general, steady-state techniques are useful when the temperature of the material does 

not change with time. This makes the signal analysis straightforward (steady state implies 

constant signals). The disadvantage is that a well-engineered experimental setup is 

usually needed. The Divided Bar (various types) is the most common device used for 

consolidated rock solids. 

2.8 The Boussinesq Approximation: 

The Boussinesq approximation is applied to problems where the fluid varies in 

temperature from one place to another, driving a flow of fluid and heat transfer. The fluid 

satisfies conservation of mass, conservation of momentum and conservation. In the 



24 
 

Boussinesq approximation, variations in fluid properties other than density ߩ are ignored, 

and density only appears when it is multiplied by g, the gravitational acceleration [37].  

2.8.1The Continuity Equation: 

A continuity equation in physics is an equation that describes the transport of some 

quantity. It is particularly simple and particularly powerful when applied to a conserved 

quantity, but it can be generalized to apply to any extensive quantity. 

Since mass, energy, momentum, electric charge and other natural quantities are 

conserved under their respective appropriate conditions; a variety of physical phenomena 

may be described using continuity equations.    

The equation of continuity is derived from the law of conservation of mass. The law of 

conservation of mass assumes that mass can neither be created nor destroyed and that on 

a steady flow process, the stored mass in a control volume does not change. A steady 

flow process is one where the flow rate does not change over time. This implies that 

inflow into the control volume equals outflow. For a steady fluid flow, the form of the 

equation of continuity is: 

డఘ
డ௧

+ డ(ఘ୳)
డ௫

+డ(ఘ୴)
డ௬

 + ப(ఘ୵)  
డ௭

= 0                                                                                  (2.16) 

Since the fluid in consideration is assumed to be incompressible (i.e constant density), 

then equation of continuity takes the following form: 

     
డ௨
డ௫

 + 
డ୴
డ௬

+
డ୵
డ௭

 = 0                                                                                                              (2.17) 

 



25 
 

2.8.2 Momentum Equation :    

The law of the conservation of momentum states that the rate of change of momentum in 

the control volume is equal to the sum of the net momentum flux into the control volume 

and any external forces acting on the control volume. This implies that the total 

momentum of a closed system of objects is constant.                                                                                                                                           

Although the most rigorous derivation of the conservation of momentum equations also 

stems from the general form continuity equation formed above, a quicker and nearly as 

rigorous derivation can be done using Newton’s laws and an application of the chain rule. 

Basic physics dictates that                                                                         

ܨ⃗ = ݉ ܽ⃗                                                                                                                             (2.18) 

Allowing for the body force  ⃗ܨ =  ሬܾ⃗     and substituting density for mass, we get a similar 
equation: 
 
ሬܾ⃗ = ߩ ௗ

ௗ௧
 vሬሬ⃗ (x, y, z, t)                                                                        (2.19) 

 
Note that we can substitute density for mass because we are operating with a fixed 

control volume and infinitesimal fluid parcels. 

The body force bሬ⃗  is a force that acts throughout the body of fluid (as opposed to, say, a 

shear force, which acts parallel to a plane). 

Applying the chain rule to the derivative of velocity, we get 

ሬܾ⃗ = డv )ߩ
డ௧
ሬሬሬ⃗ + డv

డ௫
ሬሬሬ⃗ డ௫

డ௧
+ డv

డ௬
ሬሬሬ⃗ డ௬

డ௧
+ డv

డ௭
ሬሬሬ⃗ డ௭

డ௧
)                                                                        (2.20) 

Equivalently,    

  ሬܾ⃗ = డ௩ )ߩ
డ௧
ሬሬሬ⃗ + vሬሬ⃗ .∇vሬሬ⃗ )                                                                                                  (2.21)                                           
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Substituting the value in parentheses for the definition of a material derivative, we obtain 

our final equation of 

ߩ ஽vሬሬ⃗
஽௧

= ሬܾሬ⃗                                                                                                                         (2.22) 

 

2.8.3 Equation of Conservation of Energy: 

For a single phase material, the amount of heat per unit volume is ߔ =  ௣ ܶ where ܿ௣ isܿߩ

the specific heat (energy per unit mass per degree Kelvin) at constant pressure and T is 

the temperature. The heat flux has two components due to conduction and transport. In 

the absence of transport the heat flux is F = −k∇T where k is the thermal conductivity. 

Note that heat flows opposite to ∇T, i.e. heat flows from hot to cold. The transport flux is 

ܿ௣ ܸܶ . Finally, unlike mass, heat can be created in a region due to terms like radioactive 

decay or viscous dissipation and shear heating. We will just lump all the source terms 

into H. Thus the simplest conservation of heat equation is 

 
பఘୡ౦ ୘

ப୲
+ ∇. .∇k = ( c୮ TVߩ) ∇T + H                                                                             (2.23)                                                       

For constantܿ௣ and k, this equation can also be rewritten: 

ப୘
ப୲

+ V∇T = κ∇ଶT + H c୮ൗߩ                                                                                             (2.24)                                                            

Where κ =݇ ௣ൗܿߩ   is the thermal diffusivity. 

The three numbered equations are the basic convection equations in the Boussinesq 

approximation. 
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Chapter Three 

MHD Flow over a Stretching Surface in Porous Medium with Heat 

Transfer 

3.1 Governing Equations and Analysis: 

In this chapter we shall discuss the equations governing the MHD flow of an electrically 

conducting fluid over a horizontal sheet in porous medium. The equations of the 

conservation of momentum and the equation of energy are derived. This is followed by 

non-dimensionalizing process of the equations governing the flow. Newton’ method used 

to approximate the solution to the governing equations is then discussed. Finally the 

results are discussed at the end of the chapter. 

Consider the incompressible viscous laminar flow caused by moving sheet, which is 

placed in stationary fluid, in presence of heat source. The flow is assumed to be in the x-

direction which is chosen along the sheet and the y-axis perpendicular to it. A transverse 

magnetic field of strength B଴ is applied parallel to y-axis. The magnetic Reynolds number 

is taken to be small enough so the induced magnetic field is negligible in comparison 

with the applied magnetic field, so that: 

B୶ = B୸ = 0	and B୷ = B଴ 

The viscous and joule heating are taken in account. The generalized Ohm’s law [38] 

including Hall current is given in the form: 

 J = 	 ஢
ଵା୫మ	

	(	E + V × B −			 ଵ	
ୣ୬౛

		J	 × B	)	                                                                 

 

(3.1) 
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where		J is the electric current density	(	J୶ , J୷ ,	J୸) are components of electric current 

density  J, the equation of conservation of electric charge ∇.	ܬ = 0 		yields J୷ = 0 ,  V is the 

velocity vector,	ܧ is the intensity vector of the electric field, B is the induced magnetic 

vector , m is the Hall parameter and e is the charge of an electron, ݊௘ is the number 

density of electrons. Neglecting polarization effect, the electric field E is given as E = 0.  

So 

J = (J୶, 0, J୸)	,	B = (0, B଴, 0),	V = (u, v, w)			                                                    (3.2) 

J୶ = 	
஢୆°

(ଵା୫మ)
	(݉u+	v)                                                                               (3.3)	

J୷ = 	
஢୆°

(ଵା୫మ)
	(݉v	 −	u)                                                                   (3.4) 

From equations above and considering the usual boundary layer and under Boussinesq 

approximations, the equations of momentum, concentration, and energy in porous 

medium are given below. 

డu
డ௫
	+	

డ୴
డ௬
	 = 0                                                                                             (3.5)                                  

u డ୳
డ௫
	+v	డ୳

డ௬
		= ߥ డమ୳

డ௬మ
− ఔ	

௄
u − ఙ஻బమ	

ఘ(ଵା௠మ)
	(u +  (3.6)																															(ݓ݉

 	u డ௪
డ௫
	+v	߲ݓ	ݕ߲ 		= ߥ ߲

ݓ2
2ݕ߲ 	+	

ఙ஻బమ	
ఘ(ଵା௠మ)

	(݉u −  (3.7)																																													(ݓ

u డ்
డ௫
	+vడ்

డ௬
		= ௞

ఘ௖೛

డమ்
డ௬మ

	+	
୕	
ఘ௖೛
	( ஶܶ − ܶ	)										`																																										(3.8)	
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The boundary conditions are: 

ݕ		ݐܣ = ݑ				0 = ,	ݔܿ v = 	−	v଴		, 	ݓ = 	0                                                                      (3.9)	

	ݕ	ݐܣ = 	ݑ			∞	 = 	v	 = 	ݓ	 = 0                                                                                    (3.10) 

In addition to the  above , boundary conditions on the temperature are: 

డ்
డ௬
= = ଶ at yݔܤ 0 ,ܶ = 	 ஶܶ as ݕ ⟶ 		∞			                                                             (3.11) 

Introducing the following non-dimensional variables: 

		u = V			,	(ߟ)ᇱ݂ݔܿ = ߟ			,			(ߟ)݂	ܿߥ√− = 	ට
௖
ఔ
ݓ  , 	ݕ	 =  (3.12)                (ߟ)ℎݔܿ

We get: 

	డ௨
డ௫

 =݂ܿᇱ                                                                          (3.13) 

డ௨
డ௬
	= ට௖ݔܿ

ఔ
 ݂ᇱᇱ                                                              (3.14) 

డమ௨
డ௬మ

 =	ܿ
ݔ2
ߥ    ݂ᇱᇱᇱ	                                                                 (3.15) 

డ௪
డ௫
		=ܿℎ                                                                             (3.16) 

		డ௪
డ௬

ට௖ݔܿ	=
ఔ
	ℎᇱ                                                                (3.17)      

డమ௪
	డ௬మ	

 = 
௖మ

ఔ
 ℎᇱᇱ                                                                      (3.18)ݔ
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Substitute equations 3.13 – 3.15  in equation (3.6) ,we get: 

ܿଶ݂ݔᇱ݂ᇱ − ᇱᇱට݂ݔܿ	݂	ܿߥ√
௖
ఔ
௖	ߥ	=		

మ௫
ఔ
		݂ᇱᇱᇱ	 −	ఔ

௄
	−	ᇱ݂	ݔܿ	 ఙఉబమ

ఘ(ଵା௠మ)
ᇱ݂ݔܿ) 	(ℎݔܿ݉+

Thus,		

	ܿଶݔ		݂ᇱଶ	 − ܿଶ݂݂ݔᇱᇱ	=	ܿଶݔ			݂ᇱᇱᇱ		−	ఔ௖௫
௄
	݂ᇱ − 0ߚߪ

ݔ2ܿ

(2݉+1)ߩ
	݂ᇱ	−	

ఙఉబమ௖௫	௠
ఘ(ଵା௠మ)

	ℎ			(3.19)	

Divide by ܿଶݔ  we get: 

݂ᇱଶ	– ݂݂ᇱᇱ = ݂ᇱᇱᇱ	 − 
ఔ
௖௄

 ݂ᇱ − 	 0ߚߪ
2

൫1+݉2൯ߩܿ
݂′ − 

ఙఉబమ

ఘ௖
	 ௠
(ଵା௠మ)ℎ																				              (3.20) 

Where prime denotes differentiation with respect to ߟ only and the dimensionless 

parameters are ܯ=	ఙఉబ
మ

ఘ௖
 the magnetic parameter and  ߣ = 

ఔ
௖௄

 is defined as the 

permeability parameter.                         

Equation (3.6) becomes: 

݂ᇱଶ	 − ݂݂ᇱᇱ = ݂ᇱᇱᇱ	  − ᇱ݂ ߣ −
ெ

(ଵା௠మ)
	(݂ᇱ + ݉ℎ)                                                 (3.21) 

Substitute equations 3.16 – 3.18 in equation (3.7), we get: 

ᇱܿℎ݂	ݔܿ ℎᇱටݔ݂ܿ	ܿߥ√	−
௖
ఔ

  =  
௖మ௫
ఔ
	 ℎᇱᇱ	+	 ఙఉబమ

ఘ(ଵା௠మ)
ᇱ݂ݔܿ݉) − 	(3.22)																				ℎ)ݔܿ
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Divide	by	ܿଶݔ,	we	get:	

	݂ᇱℎ − 	݂ℎᇱ   =	ℎᇱᇱ	+	 ఙఉబమ

ఘ௖(ଵା௠మ)
(݂݉ᇱ − ℎ)																																																																		(3.23)	

Equation (3.7) becomes: 

݂ᇱℎ − 	݂ℎᇱ   =	ℎᇱᇱ	+	 ெ
(ଵା௠మ)

(݂݉ᇱ − ℎ)																																																																								(3.24) 

To solve the equation (3.8) with corresponding to boundary condition (3.11), we assume 

the dimensionless temperature (ߟ)ߠas : 

ܶ = ஶܶ		 + ටఔܤ
௖
	(3.25)																																																																						(ߟ)ߠଶݔ	

డ்
డ௬
=  ᇱ                                                                                      (3.26)ߠଶݔܤ

డమ்
డ௬మ

ට௖	ᇱᇱߠ ଶݔܤ	= 
ఔ

                                                                             (3.27) 

డ்
డ௫
= ටఔܤݔ2

௖
 (3.28)																																																																																																	ߠ	

Substitute equations 3.26 -3.28  in equation (3.8): 

ߠ	ᇱ݂ߥܿ√ܤଶݔ2 − ᇱߠ݂ߥܿ√ܤଶݔ =
௞
ఘ௖		

ට௖	ܤଶݔ
ఔ
	ᇱᇱߠ − ொ

ఘ	௖		
ටఔ	ܤଶݔ

௖
 (3.29)             ߠ		

Divide by	ݔଶߥܿ√ܤ: 

 
௞

ఘ௖ఔ		
	ᇱᇱߠ + ᇱߠ݂ − 2݂ᇱߠ − ொ

ఘ	௖మ		
ߠ = 0                                                                 (3.30) 
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Where ܲݎୀ
ఘ௖ఔ
௞		
	the Prandtl number	and	=ߚ	݇ߥܳ	ܿ			is defined as heat generation /absorption 

parameter. 

Equation (3.8) becomes: 

	ᇱᇱߠ + ᇱߠ݂	ݎܲ − ߠᇱ݂	ݎ2ܲ − ߠ	ߚ = 0																																																																										(3.31)	

So, the non-dimensional equations are: 

݂ᇱଶ	 − ݂݂ᇱᇱ = ݂ᇱᇱᇱ	  - ᇱ݂ ߣ −
ெ

(ଵା௠మ)
	(݂ᇱ + ݉ℎ)                             (3.32) 

݂ᇱℎ − 	݂ℎᇱ   =	ℎᇱᇱ	+	 ெ
(ଵା௠మ)

(݂݉ᇱ − ℎ)																																														(3.33)	

ᇱߠ݂ݎܲ		+	ᇱᇱߠ − ߠᇱ݂ݎ2ܲ − ߠߚ	 = 0																																																				(3.34)	

 

3.2 Results and Discussion: 

The various parameters that have been varied include the Hall parameter m, Magnetic 

field M, Ratio of kinematic viscosity to Darcy permeability constant	ߣ, and heat source 

parameter . These parameters are input into a computer program where each parameter 

is varied at a time. 

Figure (3.1) shows that the increasing in Hall parameter m leads to an increase in the 

magnitude of primary flow velocity while figure (3.2) shows that the Hall parameter has 

opposite effect on secondary flow velocity. Figure (3.3) shows that the Hall parameter 

has no effect on temperature profiles.  
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Figure (3.1) Effect of m on the primary flow velocity profiles U with M=1,=5,=1 

 

Figure (3. 2) Effect of m on the secondary flow velocity profiles V with M=1,=5,=1 
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Figure (3.3) Effect of m on the temperature transfer profiles with M=1,=5,=1 
 

 

Figs.(3.4) ,(3.5) and(3.6) show the effects of the magnetic parameter M on the velocity 

and temperature profiles within the boundary layer. It is noticed that the increasing of 

magnetic field parameter M has a tendency to slow down the velocity of the fluid. 

Decreasing the velocity of the fluid slows down the movement of the species, while it 

increases the temperature profiles.  
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Figure (3.4) Effect of M on primary flow velocity profiles U with m=1,=5,=1 

 

Figure (3.5) Effect of M on the secondary flow velocity profilesVwith m=1,=5,=1 
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Figure (3.6) Effect of M on the temperature transfer profiles with m=1,=5,=1 
 
 

Figures (3.7) and (3.8) express that with the increase of the permeability parameter λ 

decreases the magnitude of primary and secondary flow velocities, is explained by the 

fact that increase in λ   means a decrease in the size of the pores of the porous medium 

and this causes an increased resistance to the flow, leading to lower velocity. Figure (3.9) 

shows that  increasing in λ tends to increase in temperature profile, this observation is due 

to the fact that increase in λ leads to thinner temperature boundary layer, thereby leading 

to an increase in the rate of heat transfer. 
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Figure (3.7) Effect of on primary flow velocity profiles U with m=1,=5,M=1 
 

 
 

Figure (3.8) Effect of   on the secondary flow velocity profilesVwith m=1,=5,M=1 
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Figure (3.9) effect of  on the temperature transfer profiles with m=1,=5,=1 
 
 

 The primary and secondary velocity doesn’t change as the values of   increase in figures 

(3.10) and (3.11). But the temperature in boundary layer decreases when magnitude of 

heat sourse rate increases in figure (3.12). 

 
Figure (3.10) Effect of  on primary flow velocity profiles U with m=1,=1,M=1 
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Figure (3.11) Effect of   on the secondary flow velocity profilesVwith m=1,=1,M=1 

 

 
Figure (3.12) Effect of on the temperature transfer profiles with m=1=1,=1 
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Table	 (3.1):	 Variation	 of	 dimensionless	 wall	 velocity	 gradients	 u	 and	 v	 and	

dimensionless	rate	of	heat	transfer		with	parameter	of	m	,	M	, β and	λ Pr=.72	 	

m M β λ u'(0) v'(0) θ'(0) 
1 0.05 5 1 -1.65035 0.000599388 -2.91966 
1 0.5 5 1 -1.69552 0.0577776 -2.91777 
1 1 5 1 -1.83227 0.207768 -2.91202 
1 1 5 1 -1.83227 0.207768 -2.91202 
2 1 5 1 -1.72858 0.180274 -2.91629 
5 1 5 1 -1.66575 0.0910943 -2.91899 
1 1 5 1 -1.83227 0.207768 -2.91202 
1 1 6 1 -1.83227 0.207768 -3.10484 
1 1 7 1 -1.88227 0.207768 -3.28443 
1 1 1 1 -1.83227 0.207768 -2.91202 
1 1 1 3 -2.38831 0.173973 -2.8909 
1 1 1 5 -2.82693 0.152945 -2.87603 

	

	

3.3 Conclusion:                                                           

In the present investigation, we dealt with the effect of Hall current on MHD flow of 

fluid over a horizontal porous sheet. The fluid is assumed to be electrically conducting 

.The highly non-linear coupled system of partial differential equations characterizing the 

flow and heat has been reduced to a coupled system of non-linear ordinary differential 

equations by applying a suitable transformation. The resulting system solved numerically. 

The obtained numerical results have been presented through the figures and tabular form 

to illustrate the details of the flow behavior and heat transfer and their dependence on the 

physical parameters that are involved in the present investigation: 



41 
 

1. Increase in magnetic parameter M results in decrease in the magnitudes of 

velocity component u. The magnitude of shear stress is proportional to velocity 

and since velocity profiles decrease with increase in M, the shear stress is 

expected to decrease. Thermal boundary layer thickness decreases with increase 

in M resulting to the observed increase in the wall temperature. 

2. The shear stress in the secondary flow has its absolute value at m=1and 

approaches zero as m⇾∞, also increasing in Hall parameter m tends to increase 

the primary velocity component and to decrease the secondary velocity 

component. 

3. While the increasing in heat resource parameter ߚ	 has	 no	 effect	 on	 shear	

stresses u′ (0) and v′(0). On the other hand the table illustrates that the wall 

temperature decreased as the value of parameters increased.	 

4. Both component of the shear stress are deceased, while the wall temperature is 

increased by increasing the permeability parameter λ.  
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Chapter Four 

The Effect of Hall Current on Magneto-Hydrodynamic Flow and Heat 

Transfer over an Exponentially Stretching Sheet Embedded in a 

Thermally Stratified Medium 

 In Chapter 3, we studied the effects of Hall current on laminar boundary layer magneto 

hydrodynamic flow of an incompressible, viscous and electrically conducting fluid over 

stretching sheet embedded in porous media. 

The purpose of the present chapter is to extend the flow and heat transfer analysis in 

boundary layer over an exponentially stretching sheet embedded in stratified medium 

using suitable transformation in absence of heat source. Third order ordinary differential 

equation corresponding to the momentum equation and second order ordinary differential 

equation corresponding to heat equation are derived.  Numerical solutions of these 

equations are obtained by Newton’s method. 

4.1 Governing Equations and Analysis: 

In this chapter the equations governing the MHD flow of an electrically conducting fluid 

over horizontal sheet in porous medium. The equations of the conservation of momentum 

and the equation of energy are derived in chapter two. This is followed by non-

dimensionalizing process of the equations governing the flow. Newton’s method used to 

approximate the solution to the governing equations is then discussed. Finally the results 

are discussed at the end of the chapter. 

Consider the incompressible viscous laminar flow caused by moving sheet, which is 

placed in stationary fluid in absence of heat source. The flow is assumed to be in the x-
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direction which is chosen along the sheet and the y-axis perpendicular to it. A transverse 

magnetic field of strength B଴ is applied parallel to y-axis. The magnetic Reynolds number 

is taken to be small enough so the induced magnetic field is negligible in comparison 

with the applied magnetic field, so that: 

B୶ = B୸ = 0	and B୷ = B଴ 

The viscous and joule heating are taken into account. The generalized Ohm’s law [38] 

including Hall current is given in the form: 

J = 	 ஢
ଵା୫మ	

	(	E + V × B −			 ଵ	
ୣ୬౛

		J	 × B	)	                                                    (4.1) 

Where		J is the electric current density, (	J୶ , J୷ ,	J୸) are the components of electric current 

density	J, the equation of conservation of electric charge ∇.	ܬ = 0 		yields  J୷ = 0 ,  V is the 

velocity vector,	ܧ is the intensity vector of the electric field, B is the induced magnetic 

vector , m = 	σ୆బ	ene
	is the Hall parameter , e is the charge of an electron, and  nୣ is the 

number density of electrons. Neglecting polarization effect, the electric field E is given as 

E = 0.  

So 

J = (J୶, 0, J୸)	,	B = (0, B଴, 0)	,	V = (u, v, w)			                                                                     (4.2) 

J୶ = 	
஢B0

(ଵା୫మ)
	(m	u+	v)                                                                                               (4.3)	

J୷ = 	
஢B0

(ଵା୫మ)
	(m	v - u)                                                                                          (4.4) 

From the above equations, and considering the usual boundary layer and Boussinesq 

approximations, the equations of momentum and energy in porous medium are given 

below. 



44 
 

డ୳
డ௫
	+	డ୴

డ௬
	 = 0                                                                                                                  (4.5)                                      

u డ୳
డ௫
	+vడ୳

డ௬
డ	ߥ		=		

మ୳
డ௬మ

		−	 ఙ஻బమ	
ఘ(ଵା௠మ)

	(u +  (4.6)																																																																	(ݓ݉

u డ௪
డ௫
	+vడ௪

డ௬
డ	ߥ	=		

మ௪
డ௬మ

		+			 ఙ஻బమ	
ఘ(ଵା௠మ)

	(݉u −  (4.7)																																																												(ݓ

u డ்
డ௫
	+v	డ்

డ௬
		=		 ௞

ఘ௖೛
	డ
మ்

డ௬మ
																																																																																																									(4.8)	

Where u, v and w are the components of the velocity in the x, y ,and w directions, 

respectively. 

The appropriate boundary conditions for the problem are: 

ݕ		ݐܣ = 0				u = U଴	, v = 	−	V(x)		, 	ݓ = 	0 , T=  T୵ (x)                                  (4.9)	

u	 = 	v	 = 	ݓ	 = 0, T=  Tஶ (x) as ݕ ⟶ ∞                                                                 (4.10) 

The solution of equations (4.5),(4.6) , (4.7)and(4.8) , satisfying the boundary conditions 

(4.9) and (4.10) is : 

	u = U଴݁
ೣ
ಽ݂ᇱ(ߟ)	, ܸ = −ටఔ୙బ

ଶ௅
݁
ೣ
మಽ{	݂(ߟ) + ,		{	(ߟ)ᇱ݂ߟ	 ߟ = 	ට ୙బ

ଶఔ௅
݁
ೣ
మಽ	ݕ	 , 

w= U଴݁
ೣ
ಽℎ(ߟ),  ୘ି	୘ಮ	

୘ೢି	୘బ	
 =θ(ߟ)                                                                             (4.11) 

డ୳
డ௫

 =	୙బ
௅
݁
ೣ
ಽ݂ᇱ +  ୙బ

ଶ௅
 ݁

ೣ
ಽ ට ୙బ

ଶఔ௅
݁
ೣ
మಽ ݕ ݂ᇱᇱ                                                                   (4.12) 

డ௨
డ௬
	= U଴݁

ೣ
ಽට ୙బ

ଶఔ௅
݁
ೣ
మಽ

	

 ݂ᇱᇱ                                                                                         (4.13) 
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డమ௨
డ௬మ

 =U଴݁
ೣ
ಽට ୙బ

ଶఔ௅
݁
ೣ
మಽ

	

 ට ୙బ
ଶఔ௅

݁
ೣ
మಽ݂ᇱᇱᇱ	                                                                         (4.14) 

డ௪
డ௫
		=୙బ

௅
݁
ೣ
ಽℎ	 +  ୙బ

ଶ௅
 ݁

ೣ
ಽ ට ୙బ

ଶఔ௅
݁
ೣ
మಽ ݕ  ℎᇱ                                                                   (4.15) 

డ௪
డ௬

=U଴݁
ೣ
ಽට ୙బ

ଶఔ௅
݁
ೣ
మಽ

	

ℎᇱ                                                                                    (4.16)      

డమ௪
డ௬మ	

 =    U଴݁
ೣ
ಽට ୙బ

ଶఔ௅
݁
ೣ
మಽ

	

 ට ୙బ
ଶఔ௅

݁
ೣ
మಽ ℎᇱᇱ                                                                  (4.17) 

Substitute equations 4.12 – 4.14 in equation (4.6) ,we get: 

 U଴݁
ೣ
ಽ݂ᇱ(୙బ

௅
݁
ೣ
ಽ݂ᇱ + ୙బ

ଶ௅
 ݁

ೣ
ಽ ට ୙బ

ଶఔ௅
݁
ೣ
మಽ ݕ ݂ᇱᇱ) −ටఔ୙బ

ଶ௅
݁
ೣ
మಽ{	݂(ߟ) + U଴݁){	(ߟ)ᇱ݂ߟ	

ೣ
ಽට ୙బ

ଶఔ௅
݁
ೣ
మಽ

	

 ݂ᇱᇱ) 

= ୙బ
మ

ଶ௅
݁
మೣ
ಽ
	
݂ᇱᇱᇱ	 −		 ఙ஻బమ

ఘ(ଵା௠మ)
(U଴݁

ೣ
ಽ݂ᇱ +݉U଴݁

ೣ
ಽℎ	)	

U଴݁
ೣ
ಽ݂ᇱ(୙బ

௅
݁
ೣ
ಽ݂ᇱ + ୙బ

ଶ௅
 ݁

ೣ
ಽ ට ୙బ

ଶఔ௅
݁
ೣ
మಽ ݕ ݂ᇱᇱ) −ටఔ୙బ

ଶ௅
݁
ೣ
మಽ{	݂ + ට ୙బ

ଶఔ௅
݁
ೣ
మಽ	ݕ	݂ᇱ	}(U଴݁

ೣ
ಽට ୙బ

ଶఔ௅
݁
ೣ
మಽ

	

 

݂ᇱᇱ) = ୙బ
మ

ଶ௅
݁
మೣ
ಽ
	
݂ᇱᇱᇱ	 −		 ఙ஻బమ

ఘ(ଵା௠మ)
(U଴݁

ೣ
ಽ݂ᇱ +݉U଴݁

ೣ
ಽℎ	)	

	

	
⇒ ୙బ

మ

௅
݁
మೣ
ಽ
	
݂ᇱଶ + ୙బ

మ

ଶ௅
݁
మೣ
ಽ
	
ට ୙బ
ଶఔ௅

݁
ೣ
మಽ	ݕ	݂ᇱ݂ᇱᇱ − ୙బ

మ

ଶ௅
݁
మೣ
ಽ
	
ට ୙బ
ଶఔ௅

݁
ೣ
మಽ	ݕ	݂ᇱ݂ᇱᇱ- ୙బ

మ

ଶ௅
݁
మೣ
ಽ
	
	݂݂ᇱᇱ = 

୙బమ

ଶ௅
݁
మೣ
ಽ
	
݂ᇱᇱᇱ	 − ఙ஻బమ

ఘ(ଵା௠మ)
U଴݁

ೣ
ಽ(݂ᇱ +݉ℎ	) 

Divide by ୙బ
మ

ଶ௅
݁
మೣ
ಽ
	
we get : 

2݂ᇱଶ	– ݂݂ᇱᇱ = ݂ᇱᇱᇱ	 -	 ଶఙఉబమ௅

ఘ(ଵା௠మ)୙బ௘
ೣ
ಽ
(݂ᇱ +݉ℎ	)                                                    (4.18) 
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Equation (4.6) becomes: 

݂ᇱᇱᇱ	 + ݂݂ᇱᇱ - 2݂ᇱଶ	– 	 ெ

(ଵା௠మ)௘
ೣ
ಽ
(݂ᇱ +݉ℎ	) =0                                                  (4.19) 

Substitute equations 4.15 -4.17  in equation (4.7), we get: 

U଴݁
ೣ
ಽ݂ᇱ(୙బ

௅
݁
ೣ
ಽ
	
ℎ + ୙బ

ଶ௅
 ݁

ೣ
ಽ ට ୙బ

ଶఔ௅
݁
ೣ
మಽ ݕ ℎᇱ) −ටఔ୙బ

ଶ௅
݁
ೣ
మಽ{	݂(ߟ) + U଴݁){	(ߟ)ᇱ݂ߟ	

ೣ
ಽට ୙బ

ଶఔ௅
݁
ೣ
మಽ

	

ℎᇱ) = 

୙బమ

ଶ௅
݁
మೣ
ಽ
	
ℎᇱᇱ +		 ఙ஻బమ

ఘ(ଵା௠మ)
(݉U଴݁

ೣ
ಽ݂ᇱ − U଴݁

ೣ
ಽℎ	)	

U଴݁
ೣ
ಽ݂ᇱ(୙బ

௅
݁
ೣ
ಽ
	
ℎ + ୙బ

ଶ௅
 ݁

ೣ
ಽ ට ୙బ

ଶఔ௅
݁
ೣ
మಽ ݕ ℎᇱ) −ටఔ୙బ

ଶ௅
݁
ೣ
మಽ{	݂ + ට ୙బ

ଶఔ௅
݁
ೣ
మಽ	ݕ	݂ᇱ}(U଴݁

ೣ
ಽට ୙బ

ଶఔ௅
݁
ೣ
మಽ

	

ℎᇱ) 

= ୙బ
మ

ଶ௅
݁
మೣ
ಽ
	
ℎᇱᇱ +		 ఙ஻బమ

ఘ(ଵା௠మ)
(݉U଴݁

ೣ
ಽ݂ᇱ − U଴݁

ೣ
ಽℎ	)	

	
⇒ ୙బ

మ

௅
݁
మೣ
ಽ
	
݂ᇱ	ℎ + ୙బ

మ

ଶ௅
݁
మೣ
ಽ
	
ට ୙బ
ଶఔ௅

݁
ೣ
మಽ	ݕ	݂ᇱℎᇱ − ୙బ

మ

ଶ௅
݁
మೣ
ಽ
	
ට ୙బ
ଶఔ௅

݁
ೣ
మಽ	ݕ	݂ᇱℎᇱ- ୙బ

మ

ଶ௅
݁
మೣ
ಽ
	
	݂ℎᇱ −

୙బమ

௅
݁
మೣ
ಽ
	
݂ℎᇱ = ୙బ

మ

ଶ௅
݁
మೣ
ಽ
	
ℎᇱᇱ	 + ఙ஻బమ௘

ೣ
మಽ 		

ఘ(ଵା௠మ)
mU଴݁

ೣ
ಽ݂ᇱ − ఙ஻బమ

ఘ(ଵା௠మ)
U଴݁

ೣ
ಽ
	
ℎ	 

Divide by ୙బ
మ

ଶ௅
݁
మೣ
ಽ
	
we get : 

2݂ᇱ	ℎ –	݂ℎᇱ= ℎᇱᇱ	 +	 ଶఙఉబమ௅

ఘ(ଵା௠మ)୙బ௘
ೣ
ಽ
(݂݉ᇱ − ℎ	)                                                    (4.20) 

 

 Equation (4.7) becomes: 

ℎᇱᇱ	 + ݂ℎᇱ − 2݂ᇱ	ℎ+ ெ

(ଵା௠మ)௘
ೣ
ಽ
(݂݉ᇱ − ℎ	)                                                           (4.21) 
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The sheet is of temperature  T௪  and is embedded in a thermally stratified medium of 

variable ambient temperature   Tஶwhere T௪˃Tஶ. It is assumed that T௪=T଴ + b݁
మೣ
ಽ  

Tஶ=T଴ + c݁
మೣ
ಽ , where T଴ is the reference temperature, b,c	˃0 are constants. 

T = (T௪ −	T଴)ߠ+Tஶ = (T௪ −	T଴)ߠ+	T଴+ c݁
మೣ
ಽ  

                                  =ܾ݁
మೣ
ಽ T଴+ c݁ + ߠ	

మೣ
ಽ  

డ்
డ௫
=	 ௕

ଶ௅
݁
ೣ
మಽ	ߠ + ௕

ଶ௅
݁
ೣ
మಽ		ߠᇱට ୙బ

ଶఔ௅
݁
ೣ
మಽ	ݕ + ௖

ଶ௅
݁
ೣ
మಽ                                                 (4.22) 

డ்
డ௬
= 	ܾ݁

ೣ
మಽට ୙బ

ଶఔ௅
݁
ೣ
మಽ ߠᇱ                                                                                           (4.23) 

డమ்
డ௬మ

= 	ܾ݁
ೣ
మಽ

୙బ
ଶఔ௅

	݁
ೣ
మಽߠᇱᇱ	                                                                                          (4.24) 

Now substitute (4.22),(4.23) and (4.24) in equation (4.8) we get: 

U଴݁
௫
௅݂ᇱ ቌ

ܾ
ܮ2 ݁

௫
ଶ௅ ߠ	 +

ܾ
ܮ2 ݁

௫
ଶ௅ ᇱඨߠ		

U଴
ܮߥ2 ݁

௫
ଶ௅ ݕ	 +

ܿ
ܮ2 ݁

௫
ଶ௅ቍ 

−ටఔ୙బ
ଶ௅
݁
ೣ
మಽ{	݂(ߟ) + ܾ݁	){	(ߟ)ᇱ݂ߟ	

ೣ
మಽට ୙బ

ଶఔ௅
݁
ೣ
మಽߠᇱ) =	 ௞

ఘ௖೛
 (ܾ݁

ೣ
మಽ

୙బ
ଶఔ௅

	݁
ೣ
మಽߠᇱᇱ	) 

U଴݁
௫
௅݂ᇱ ቌ

ܾ
ܮ2 ݁

௫
ଶ௅ ߠ	 +

ܾ
ܮ2 ݁

௫
ଶ௅ ᇱඨߠ		

U଴
ܮߥ2 ݁

௫
ଶ௅ ݕ	 +

ܿ
ܮ2 ݁

௫
ଶ௅ቍ 

−ටఔ୙బ
ଶ௅
݁
ೣ
మಽ{	݂ + ට ୙బ

ଶఔ௅
݁
ೣ
మಽ	ݕ			݂ᇱ	}(	ܾ݁

ೣ
మಽට ୙బ

ଶఔ௅
݁
ೣ
మಽߠᇱ) =	 ௞

ఘ௖೛
 (ܾ݁

ೣ
మಽ

୙బ
ଶఔ௅

	݁
ೣ
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ೣ
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ೣ
మಽ 	 ௞

ఘ௖೛
 	ᇱᇱߠ		

Divide by ௕
ଶ௅
U଴݁

ೣ
ಽ݁

ೣ
మಽ		 

	
⇒ 	݂ᇱߠ + ௖

௕
݂ᇱ −	݂ߠᇱ=	 ௞

	ఘ௖೛
                                                                                (4.25)	ᇱᇱߠ

 Where prime denotes differentiation with respect to ߟ	only	and	the	dimensionless	

parameters	appearing	in	equations	(4.27)	-	(4.29)	are	respectively	M =	ଶఙ஻బ
మ୐		

ఘ୙బ
  the 

magnetic parameter,	St =	௖
௕
    is the stratification parameter and Pr =

	ఘ௖೛
௞

 is the prandtl 

number. 

Equation (4.25) becomes:                                                                                               

	ᇱᇱߠ + Pr(	݂ߠᇱ − 	݂ᇱߠ ) −PrSt݂ᇱ= 0                                                        (4.26) 

So, the non-dimensional equations are: 

݂ᇱᇱᇱ	 + ݂݂ᇱᇱ -M ݂ᇱ - 2݂ᇱଶ	– 	 ெ

(ଵା௠మ)௘
ೣ
ಽ
(݂ᇱ +݉ℎ	) =	0                                  (4.27) 

ℎᇱᇱ	 + ݂ℎᇱ − 2݂ᇱ	ℎ+ ெ

(ଵା௠మ)௘
ೣ
ಽ
(݂݉ᇱ − ℎ	) = 0                                                 (4.28) 

	ᇱᇱߠ + Pr(	݂ߠᇱ − 	݂ᇱߠ ) −PrSt݂ᇱ= 0                                                                  (4.29) 
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4.1 Results and Discussion: 

In this section we will analyze the results which that we got it from the numerical 

computation in the previous section for various values of suction parameter 

(S),stratification parameter (St),magnetic parameter(M) and Hall parameter(m) 

Figure(4.1) – (4.12) illustrate the results. 

Figures (4.1)-(4.3) depict the effects Hall parameter, an interesting result observed from 

these figures that the cross-flow velocity gradually increases with the increase of m ≤ 2 

and the velocity decreases for m > 2. The values of m beyond which the flow behavior 

changes are considerable depending upon the choice of the magnetic parameter M. While 

the effect of the Hall current parameter m has an increasing effect on the dimensionless 

temperature θ (η) shown in figure (4.3). 

 

Figure (4.1) Effect of m on the primary flow velocity profiles U with M=1, S=1, St=0.1 
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Figure (4.2). Effect of m on the secondary flow velocity profilesV with M=1, S=1, St=.1 

 

Figure (4.3) Effect of m on the temperature transfer profiles with  M=1, S=1, St=0.1 

Figure (4.4) represent the effect of variation of magnetic parameter on primary flow 

velocity. With increasing values of M, fluid velocity is found to decrease, because the 



51 
 

Lorentz force which opposes the motion of fluid increases with the increase in M. While 

figure (4.6) shows that increasing in M tends to increase in temperature. 

 

Figure (4.4) Effect of M on primary flow velocity profiles U with m=1, S=1, St=0.1 
 

 

Figure (4.5) Effect of M on the secondary flow velocity profiles V with m=1, S=1, St=0.1 
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Figure (4.6) Effect of M on the temperature transfer profiles with m=1, S=1, St=0.1 

 
 

Figures (4.7) – (4.9) depict the effects of suction parameter S on velocity and 

temperature, respectively, for exponentially stretching sheet. It observed that the velocity 

decreases with increasing suction parameter. The temperature suffers decrement as the 

suction parameter increases because the boundary layer decreases thickness. Further in 

absence of suction parameter the temperature profile becomes linear. 
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Figure (4.7) Effect of Son primary flow velocity profiles U with m=1,St=0.1,M=1 
 

 
Figure (4.8) Effect of S on the secondary flow velocity profilesVwith m=1, St=0.1,M=1 
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Figure (4.9) Effect of S on the temperature transfer profiles with m=1, St=0.1,=1 

 

 Next we present the effect of thermal stratification parameter (St) on velocity and 

temperature in figures (4.10) – (4.12). It is clear that (St) does not effect on the velocity. 

But the temperature decreases as the stratification parameter increases. Since increase in 

St means increase in free steam temperature or decrease in surface temperature, thermal 

boundary layer thickness is therefore also decreased with an increase in St Values.  
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Figure (4.10) Effect of St on primary flow velocity profiles U with m=1, S=1, M=1 
 

 

Figure (4.11) Effect of St on the secondary flow velocity profilesVwith m=1, S=1,M=1 
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Figure (4.12) Effect of St on the temperature transfer profiles with m=1 S=1,=1 
	

	

Table	 (4.1)	 	 Variation	 of	 dimensionless	 wall	 velocity	 gradients	 u	 and	 v	 	 and	

dimensionless	rate	of	heat	transfer		with		parameters	m	,	M	, S and  St for Pr=.72	 	

m M S St u′(0) v′(0) ′(0) 
1 1 1 0.1 -1.911448 0.00195801 -1.19861 
2 1 1 0.1 -2.25816 0.137646 -1.17064 
5 1 1 0.1 -2.20814 0.068721 -1.17473 
1 0.1 1 0.1 -1.91448 0.00195801 -1.19861 
1 0.5 1 0.1 -2.0837 .0457774 -1.1846 
1 1 1 0.1 -2.34292 0.161716 -1.16417 
1 1 0 0.1 -1.79116 0.168497 -0.789172 
1 1 0.5 0.1 -2.04979 0.167161. -0.962441 
1 1 1 0.1 -2.34292 0.161716 -1.16417 
1 1 1 0.0 -2.05303 0.175548 -1.28648 
1 1 1 0.1 -2.05303 0.175548 -1.31527 
1 1 1 0.5 -2.05303 0.175552 -1.42844 
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4.3 Conclusion: 

The present study gives the numerical solutions for the effect of Hall current on steady 

MHD boundary layer flow and heat transfer over an exponential stretching surface 

embedded in thermally stratified medium in presence of suction. 

 The highly non-linear coupled system of partial differential equations characterizing the 

flow, heat transfer has been reduced to a coupled system of non-linear ordinary 

differential equations by applying a suitable similarity transformation. The resulting 

system is solved numerically by using the finite difference scheme along with the 

Newton’s linearization technique. The obtained numerical results have been presented 

through the figures and in tabular form to illustrate the details of the flow behavior, heat 

transfer phenomena and their dependence on the physical parameters that are involved in 

the present investigation. From our computed numerical results we observed that: 

1. Shear stress u′(0) increased due the increasing in the values of Hall parameter m 

while the shear stress v′(0) decreased.. 

2. Increasing values of magnetic parameter decrease the velocity components u and 

v and wall temperature. 

3. The effect of suction as well as magnetic parameter on viscous incompressible 

fluid is to decrease the velocity. 

4. The temperature decreases with increasing values of stratification parameter. 
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  مائع في وسط مسامي لالتدفق الھیدرومغناطیسي 

 

  اعداد

 مریم طایع عبدالله

 المشرف

 د.خالد جابر

  

  

  الملخص

لسائل لزج غیر قابل  مغناطیسيعلى سریان ھیدرو ولھأثیر تیارھذه الرسالة ت سوف ندرس في 

رقائقي بوجود مجال مغناطیسیى ومصدر حراري داخل وسط مسامي.وسوف یتم  للانضغاط،حدودي

التحلیل  طرقبلیتم  حلھا تحویل معادلات الحركة وانتقال الحرارة إلى معادلات تفاضلیة غیر متجھة 

 . ثم مناقشة تأثیر ھذه العوامل على السرعة والحرارة وتمثیلھا بیانیاباستخدام برنامج الماثماتیكا  العددي

  .عن طریق برنامج الھارفارد

 

 

 

 

 


