Faculty: Engineering Technology

Department: Energy

Program: Bachelor Degree

Academic year: 2022-2023

Semester: 2st(Fall)

Course Plan

First: Course Information

<i>Course No.</i> 0906203	Course Title: Electrical circuits	Credit Hours:3
<i>Prerequisite:</i> 0300122	Section No.: 1	Lecture Time: 10-11,Sun,Tue,and Thu
Type Of Course:	 Obligatory Faculty Requirement Elective ObligatoryUniversity Requirement Course Elective SpecialtyRequirementObli 	 University Requirement FacultyRequirement gatorySpecialization requirement
Type of Learning:	 Face-to-Face Learning BlendedLearning(2 Face-to-Face + 1Asynch Online Learning (2 Synchronous+1 Asynch 	·

Second: Instructor's Information

Name: Dr. Hani Attar			Academic Rank: Assistant Professor			
Office Number:43 l			Ext. Number:2029		E-mail: Hattar@zu.edu.jo	
Office Hours:	Sunday 11-12	Monday 11-12	y Tuesday 11-12	Wedness 11 -12	day Thursday 11-12	

Third: Course Description

Basic Electric Components and Equivalent Circuit. Kirchhoffs' laws (KVL and KCL). Circuit analysis techniques: Nodal analysis, mesh analysis, superposition, source transformations. Thevenin's and Norton's theorems, maximum power transfer. Unit step response of RL and RC circuit.AC circuit introduction.Impedance and Admittance. Phasor form representation. Steady state sinusoidal circuit analysis using phasor techniques, frequency response. Apparent Power , active and reactive power, power factor, complex power. 3-phase balanced (Y-Y) and (delta-delta) connection circuits. Circuit analysis using Fourier series

Fourth: Learning Source

Main Reference:	Fundamentals o	f electrical circuits	
<i>Author:</i> Charles K. Matthew N.O. Sadiku		Issue No.: 5 th	Publication Year: 2001
Additional Sources&Websites:Engineering circuit analysis ", by William H. Hayt,, Jack E. Kemmerly and Steven M. Durbin. 8th edition			
Teaching Type:	Classroom	Laboratory 🗆 Worksho	p 🗖 MS Teams 🗖 Moodle

Fifth: Learning Outcomes

Course Code	Course IntendedLearning Outcomes (CILOs)	Connection To Program ILOs Code					
	Knowledge						
**K1	The ability to use the different circuit analysis methods: mesh current analysis and node voltage analysis.	*PK1					
K2	The ability to simplify circuits using circuit theorems, such as: Thevenin and Norton theorems, super position principle, and source transformation.	PK2					
K3	The ability to analyze the behavior of inductors and capacitors and the step response of R-L and R-C circuits	РК3					
	Skills						
***S1	To be familial with Sinusoidal wave characteristics, connection and types, complex numbers, phasor representation and analyze frequency response of R-L, R-C and R-L-C circuits.	PS1					
S2	The ability to analyze the complex power and power factor	PS2					
S 3	To be familiar with the basic concepts of 3-phase systems	PS3					
S 4	Analyze ac circuit using Fourier series.	PS4					
	Competencies						
****C1	To be familiar with using Ohm's law and the calculations of power, analyze series, parallel and series-parallel resistive circuits, using Kirchhoff's current and voltage laws	PC1					

* P: Program, **K: knowledge, ***S: skills, ****C: competencies

Sixth: Course Structure

Lecture Date	Intended Teaching Outcomes(ILOs)	Topics	Teaching Procedures*	TeachingMethods***	References***
5/3/2023	0	Ohm's law, DC power calculation, series, parallel and series-parallel resistive circuits, Kirchhoff's current and voltage laws	General discussions	Discussion and problem Solving	Energy Engineering
7/3/2023	1	Ohm's law, DC power calculation, series, parallel and series-parallel resistive circuits, Kirchhoff's current and voltage laws	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
9/3/2023	1	Ohm's law, DC power calculation, series, parallel and series-parallel resistive circuits, Kirchhoff's current and voltage laws	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
12/3/2023	1	Circuits analysis methods : Nodal and mesh analysis	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
14/3/2023	2	Circuits analysis methods : Nodal and mesh analysis	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
16/3/2023	1 & 2	Circuits analysis methods : Nodal and mesh analysis	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
19/3/2023	3	Circuit theorems: Thevenin's , Norton's , source transformation , super position theorems and maximum power transfere	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
21/3/2023	3	Circuit theorems: Thevenin's , Norton's , source transformation , super position theorems and maximum power transfere	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
23/3/2023	3	Circuit theorems: Thevenin's , Norton's , source transformation , super position theorems and maximum power transfere	General discussions	Discussion and problem Solving	Energy Engineering

issue:02

Issue Date:12/3/2023

26/3/2023		Inductors,	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
	3	capacitors,	explain the current lecture	Solving	
	5	step response			
		of R			
28/3/2023		Inductors,	Review the previous lecture, then	Discussion and problem	Energy Engineering
		capacitors,	explain the current lecture	Solving	
	3	-			
		step response			
20/2/2022		of R		D' ' 1 11	
30/3/2023		Inductors,	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
	4	capacitors,	explain the current lecture	Solving	
	-	step response			
		of R			
2/4/2023		Inductors,		Discussion and problem	Energy Engineering
		capacitors	At least one exam will be held	Solving	
	3 & 4	step response	suddenly during the semester		
		of R	,		
4/4/2022		Introduction to AC	Devices the second second between these	Diamaian and muchlant	Energy Engineering
4/4/2023		circuits, phasor	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
	3 & 4	representation, and	explain the current lecture	Solving	
		steady state AC			
		circuit analysis			
6/4/2023		Introduction to AC	Review the previous lecture, then	Discussion and problem	Energy Engineering
	4	circuits, phasor	explain the current lecture	Solving	
	4	representation, and steady state AC			
		circuit analysis			
9/4/2023		Introduction to AC	Review the previous lecture, then	Discussion and problem	Energy Engineering
	_	circuits, phasor	explain the current lecture	Solving	
	5	representation, and			
		steady state AC circuit analysis			
11/4/2023		Introduction to AC		Discussion and problem	Energy Engineering
11/ 1/2025		circuits, phasor		Solving	
	5	representation, and	General discussions		
		steady state AC			
12/4/2022		circuit analysis	Review the previous lecture, then	Discussion and problem	Energy Engineering
13/4/2023		AC power analysis: average	explain the current lecture	Solving	Energy Engineering
		power, apparent		Sorring	
	5	power, reactive			
		power, complex			
		power and power factor			
16/4/2023		AC power	Review the previous lecture, then	Discussion and problem	Energy Engineering
10/4/2023		analysis: average	explain the current lecture	Solving	Energy Engineerin
		power, apparent	*	U	
	5	power, reactive			
		power, complex			
		power and power factor			
18/4/2023		AC power analysis:	Review the previous lecture, then	Discussion and problem	Energy Engineerin
10/ 1/2023		average power,	explain the current lecture	Solving	Engineerin
	5	apparent power,	· ·	Ũ	
		reactive power, complex power and			
		power factor			

issue:02

Issue Date:12/3/2023

20/4/2023		AC power analysis: average		Discussion and problem Solving	Energy Engineering
	4	power, apparent power, reactive power, complex	At least one exam will be held suddenly during the semester		
		power and power factor			
27/4/2023	3 & 4	phase balanced circuits: Y	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
30/4/2023	6	phase balanced circuits: Y	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
2/5/2023	4	phase balanced circuits: Y	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
4/5/2023	3 & 4	phase balanced circuits: Y	General discussions	Discussion and problem Solving	Energy Engineerin
7/5/2023	3 & 4	phase balanced circuits: Y	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
9/5/2023	4	phase balanced circuits: Y	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
11/5/2023	6	phase balanced circuits: Y	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
14/5/2023	4	phase balanced circuits: Y	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineerin
16/5/2023	6	phase balanced circuits: Y	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
18/5/2023	4	AC circuit analysis using Fourier series	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
21/5/2023	7	AC circuit analysis using Fourier series	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
23/5/2023	8,9,10	AC circuit analysis using Fourier series	General discussions	Discussion and problem Solving	Energy Engineerin
28/5/2023	8,9,10	AC circuit analysis using Fourier series	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
30/5/2023	8,9,10	AC circuit analysis using Fourier series	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
1/6/2023	8,9,10	AC circuit analysis using Fourier series	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
4/6/2023	10	AC circuit analysis using Fourier series	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineerin
6/6/2023	10	AC circuit analysis using Fourier series	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin

* Learning procedures: (Face-to-Face, synchronous, asynchronous). * * Teaching methods: (Lecture, video....). ** * Reference: (Pages of the book, recorded lecture, video....).

Seventh: Assessment methods

Methods	Grade	Date	Platform	CLO'S
First Exam	20	Fixed by the Department	Classroom	
Second Exam	20	Fixed by the Department	Classroom	
Assign, Quizzes &Participation	10	During Semester	Classroom+Moodle	
Final Exam	50	Fixed by the Department	Classroom	

Eighth: Course Policies

- All course policies are applied on all teaching patterns (online, blended, and face-to-face Learning) as follows:
 - a. Punctuality.
 - b. Participation and interaction.
 - c. Attendance and exams.
- Academic integrity: (cheating and plagiarism are prohibited).

Approved by:	Name	Date	Signature
Head of Department	Dr. Ayman Amer	5/3/2023	(j ¹ -
Faculty Dean	Prof .Taiseer Alghanim	5/3/2023	EN-

