Faculty: Engineering Technology

Department: Energy

Program: Bachelor Degree

Academic year: 2023-2024

Semester: 3rd(Fall)

Course Plan

First: Course Information

<i>Course No.</i> 0906404	<i>Course Title:</i> Communications systems principles	Credit Hours:3
Prerequisite: 0906410	Section No.: 1	Lecture Time: Sun – Mon- Tue – Wed 1:15-12:00
Type Of Course:	 Obligatory Faculty Requirement Elective ObligatoryUniversity Requirement Course Elective SpecialtyRequirementObli 	 University Requirement FacultyRequirement gatorySpecialization requirement
Type of Learning:	 Face-to-Face Learning BlendedLearning(2 Face-to-Face + 1Asynch Online Learning (2 Synchronous+1 Asynch 	

Second: Instructor's Information

<i>Name:</i> Dr. Hani Attar			Academic Rank: Assistant Professor			
Office Number:222 l			Ext. Number:2029		E-mail: Hattar@zu.edu.jo	
Office Hours:	Sunday 10-11	Monday 11-12	y Tuesday 10-11	Wedneso 11 -12	day Thursday 10-11	

Third: Course Description

Review of Fourier transform and filters. Amplitude modulation (AM, DSB, SSB, VSB). Angle modulation (FM, PM). Sampling, Quantization, PCM, DPCM, DM. Multiplexing. Line coding. Baseband channel and ISI. Digital modulation (PSK, ASK, FSK, and M-ary). Power spectra of digital signals. Synchronization.

Fourth: Learning Source

Main Reference:	"Communication 4thedition,JohnW	Systems", bySimonHayk /iley&sons Inc.	in,
Author: SimonHaykin		Issue No.:	Publication Year: 2001
Additional Sources&Websites:	•		
Teaching Type:	Classroom Laboratory C Workshop MS Teams Moodle		

Fifth: Learning Outcomes

Course Code	Course IntendedLearning Outcomes (CILOs)	Connection To Program ILOs Code				
	Knowledge					
**K1	<u>Determine</u> the characteristics of the ideal and practical filters.	*PK1				
K2	<u>Analyze</u> various methods of AM modulation and demodulation systems.	PK2				
K3	Analyze FM modulation and demodulation systems.	PK3				
	Skills					
***S1	Explain the FDM and the digital multiplexing and hierarchy standard	PS1				
S2	<u>Convert</u> the analog signal to a digital signal using the PCM system.	PS2				
S3	Explain the binary digital modulation schemes and the required BW; ASK, PSK, and FSK.	PS3				
Competencies						
****C1	Determine the energy spectral and power spectral densities for ASK, PSK and FSK.	PC1				

* P: Program, **K: knowledge, ***S: skills, ****C: competencies

Sixth: Course Structure

Lecture Date	Intended Teaching Outcomes(ILOs)	Topics	Teaching Procedures*	TeachingMethods***	References***
2024 / 7 / 14	A1	Random processes	General discussions	Discussion and problem Solving	Energy Engineering
2024 / 7 / 15	A2	Random processes	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 7 / 16	A3	Random processes	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 7 / 17	B1	Continuous .Wave Modulation	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 7 / 21	B2	Continuous .Wave Modulation	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
2024 / 7 / 22	B3	Continuous .Wave Modulation	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 7 / 23	A1-B1	Pulse Modulation	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 7 / 24	A2-A3	Pulse Modulation	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 7 / 28	A2-B1	Pulse Modulation	General discussions	Discussion and problem Solving	Energy Engineering
2024 / 7 / 29	С	Signal.Space Analysis	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 7 / 30	A1	Signal.Space Analysis	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 7 / 31	A2	Signal.Space Analysis	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 8 / 4	A3	Passband Digital Trans mission	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
2024 / 8 / 5	B1	Passband Digital Trans mission	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 8 / 6	B2	Passband Digital Trans mission	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 8 / 7	B3	Spread – spectruns Modulation	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 8 / 11	A1-B1	Spread – spectruns Modulation	General discussions	Discussion and problem Solving	Energy Engineering
2024 / 8 / 12	A2-A3	Spread – spectruns Modulation	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 8 / 13	A2-B1	Multiuser Radio Cons Municutions	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering

2024 / 8 / 14		Multiuser Radio	Review the previous lecture, then	Discussion and problem	Energy Engineering
2024/0/14	A1	Cons	explain the current lecture	Solving	Energy Engineering
		Municutions		C	
2024 / 8 / 18	A2	Multiuser Radio Cons Municutions	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
2024 / 8 / 19	A3	Fundam ental limits in information theory	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 8 / 20	B1	Fundam ental limits in information theory	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 8 / 21	B2	Fundam ental limits in information theory	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 8 / 25	B3	Error – Control Coding	General discussions	Discussion and problem Solving	Energy Engineering
2024 / 8 / 26	A1-B1	Error – Control Coding	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2024 / 8 / 27	A2-A3	Error – Control Coding	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
/ 8 / 28 2024	A2-B1	Error – Control Coding	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering

* Learning procedures: (Face-to-Face, synchronous, asynchronous). * * Teaching methods: (Lecture, video....). ** * Reference: (Pages of the book, recorded lecture, video....).

Seventh: Assessment methods

Methods	Grade	Date	Platform	CLO'S
First Exam	20	Fixed by the Department	Classroom	S-S
Second Exam	20	Fixed by the Department	Classroom	S-K
Assign, Quizzes & Participation	10	During Semester	Classroom+Moodle	All CLO'S
Final Exam	50	Fixed by the Department	Classroom	All CLO'S

Eighth: Course Policies

- All course policies are applied on all teaching patterns (online, blended, and face-to-face Learning) as follows:
- a. Punctuality.
- b. Participation and interaction.
- c. Attendance and exams.
- Academic integrity: (cheating and plagiarism are prohibited).

Approved by:	Name	Date	Signature
Head of Department	Dr. Ayman Amer		Y'-
Faculty Dean	Prof .Taiseer Alghanim		21-