Faculty: Engineering Technology

Department: Energy

Program: Bachelor Degree

Academic year: 2022-2023

Semester: 2nd(Fall)

Course Plan

First: Course Information

Course No.0906552	Course Title: Solar PV Energy Systems	Credit Hours:3		
Prerequisite: 0906353	Section No.: 1	<i>Lecture Time: 10-11,Sun,Tue,and Thu</i>		
Type Of Course:	 Obligatory Faculty Requirement Electiv ObligatoryUniversity Requirement Course Elective SpecialtyRequirementObli [requirement 	□ FacultyRequirement		
Type of Learning:	 Face-to-Face Learning BlendedLearning(2 Face-to-Face + 1Asynchronous) Online Learning (2 Synchronous+1 Asynchronous) 			

Second: Instructor's Information

Name: Dr. Mais Alzgool			Academic Rank: Assistant Professor		
Office Number:136 l		Ext. Number:2039	Number:2039E-mail: maisalzgool@yahoo.com		
Office Hours:	Sunday 11-12	Monday 11-12:3	~	Wednes 11-12:	2

Third: Course Description

This course covers the fundamentals of Solar Radiation; sun energy, sun position, potential of solar radiation, Solar calculations of the global horizontal irradiation, determination of the solar angles, fundamentals of photovoltaic energy and its main components: (Semiconductor materials, pn-junction, pn junction solar cell under illumination, current voltage characteristics of solar cells, equivalent circuit of solar cells, electrical connection of PV modules (series, parallel), mismatch effect (mismatch losses), the effect of soft shading and hard shading on array performance, PV system components, Diodes in PV Systems, DC/AC inverter topologies, Maximum power point tracking, ON grid photovoltaic system connection, PV overcurrent protection, Module inter-row spacing.

Fourth: Learning Source

Main Reference:	Principles of Sol	ar Engineering	
Author: D.Yogi Goswa	mi Issue No.: 3rd		Publication Year: 2015
Additional Sources&Websites:	•		
Teaching Type:	Classroom	Laboratory D Wo	rkshop 🗖 MS Teams 🗖 Moodle

Fifth: Learning Outcomes

Course Code	Course IntendedLearning Outcomes (CILOs)	Connection To Program ILOs Code			
	Knowledge				
**K1	Thorough understanding of the fundamentals of solar radiation and the photovoltaic effect	*PK1			
K2	Explain different phenomena regarding PV modules	PK2			
К3	Specify the main I/V curve of the series and parallel connections of the PV modules	РК3			
	Skills				
***S1	<u>Calculate</u> the solar angles and the global horizontal irradiation	PS1			
S2	Analyze the residential ON grid PV system components ratings.	PS2			
	Competencies				
****C1	<u>Apply</u> the design criteria of the residential ON grid PV system and determination of its annual energy production.	PC1			

* P: Program, **K: knowledge, ***S: skills, ****C: competencies.

Sixth: Course Structure

Lecture Date	Intended Teaching Outcomes(ILOs)	Topics	Teaching Procedures*	TeachingMethods***	References***
5/3/2023	0	Fundamentals of solar radiation, electromagnetic spectrum, air mass, STCs and radiation types	General discussions	Discussion and problem Solving	Energy Engineering
7/3/2023	1	Fundamentals of solar radiation, electromagnetic spectrum, air mass, STCs and radiation types	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
9/3/2023	1	Fundamentals of solar radiation, electromagnetic spectrum, air mass, STCs and radiation types	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
12/3/2023	1	Identification and calculations of solar angles, isotropic sky model and radiation devices	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
14/3/2023	2	Identification and calculations of solar angles, isotropic sky model and radiation devices	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineerin
16/3/2023	1 & 2	Identification and calculations of solar angles, isotropic sky model and radiation devices	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
19/3/2023	3	PV module layers, PV effect	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
21/3/2023	3	PV module layers, PV effect	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
23/3/2023	3	PV module layers, PV effect	General discussions	Discussion and problem Solving	Energy Engineerin
26/3/2023	3	PV cell equivalent circuit, mathematical relations and design	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
28/3/2023	3	PV cell equivalent circuit, mathematical relations and design	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
30/3/2023	4	PV cell equivalent circuit, mathematical relations and design	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
2/4/2023	3 & 4	Series and parallel connections of PV modules	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineerin
4/4/2023	3 & 4	Series and parallel connections of PV modules	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
6/4/2023	4	Series and parallel connections of PV modules	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
9/4/2023	5	Mismatch effect, soiling, hotspots and shading	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
11/4/2023	5	Mismatch effect, soiling, hotspots and shading	General discussions	Discussion and problem Solving	Energy Engineerin
13/4/2023	5	Mismatch effect, soiling, hotspots and shading	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
16/4/2023	5	PV Diodes and solar module data sheet	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
18/4/2023	5	PV Diodes and solar module data sheet	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin

issue:02

Issue Date:13/3/2023

20/4/2023	4	PV Diodes and solar module data sheet	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
27/4/2023	3 & 4	Temperature coefficient effect	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
30/4/2023	6	Temperature coefficient effect	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2/5/2023	4	Temperature coefficient effect	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
4/5/2023	3 & 4	PV inverters	General discussions	Discussion and problem Solving	Energy Engineering
7/5/2023	3 & 4	PV inverters	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
9/5/2023	4	PV inverters	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
11/5/2023	6	Solar radiation websites	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
14/5/2023	4	Solar radiation websites	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
16/5/2023	6	Solar radiation websites	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
18/5/2023	4	Design of on grid PV system	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
21/5/2023	7	Design of on grid PV system	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
23/5/2023	8,9,10	Design of PV system electrical parts	General discussions	Discussion and problem Solving	Energy Engineering
28/5/2023	8,9,10	Design of PV system electrical parts	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
30/5/2023	8,9,10	Online design of PV systems	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
1/6/2023	8,9,10	Online design of PV systems	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
4/6/2023	10	Sun path diagram and row spacing	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
6/6/2023	10	Sun path diagram and row spacing	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering

* Learning procedures: (Face-to-Face, synchronous, asynchronous). * * Teaching methods: (Lecture, video....). ** * Reference: (Pages of the book, recorded lecture, video....).

Seventh: Assessment methods

Methods	Grade	Date	Platform	CLO'S
First Exam	20	Fixed by the Department	Classroom	K,K
Second Exam	20	Fixed by the Department	Classroom	K ₂ S
Assign, Quizzes &Participation	10	During Semester	Classroom+Moodle	All CLO'S
Final Exam	50	Fixed by the Department	Classroom	All CLO'S

Eighth: Course Policies

- All course policies are applied on all teaching patterns (online, blended, and face-to-face Learning) as follows:
 - a. Punctuality.
 - b. Participation and interaction.
 - c. Attendance and exams.
- Academic integrity: (cheating and plagiarism are prohibited).

Approved by:	Name	Date	Signature
Head of Department	Dr. Ayman Amer	2023/3/6	() el-
Faculty Dean	Prof .Taiseer Alghanim	2023/3/6	ente

