Faculty: Engineering Technology

Department: Energy Program: Bachelor Degree

Academic year: 2025 - 2024 Semester: 1st (Fall)

Course Plan

First: Course Information

Course No. 0906454	Course Title: Wind Energy	Credit Hours:3			
Prerequisite: 0906353+0904364	Section No.: 1	Lecture Time: 11-10,Sun,Tue,and Thu			
	☐ Obligatory Faculty Requirement Electiv	e 🗆 University Requirement			
Type Of Course:	□ ObligatoryUniversity Requirement	☐ FacultyRequirement			
<i>J</i> 1 <i>J</i>	□ Course Elective SpecialtyRequirementObli gatorySpecialization requirement				
Type of Learning:	Face-to-Face Learning BlendedLearning(2 Face-to-Face + 1Asyn Online Learning (2 Synchronous+1 Async				

Second: Instructor's Information

Name: Dr. Mais Alzgool			Academic Rank: Assistant Professor			
Office Number:136 l			Ext. Number:2039		E-mail: maisalzgool@yahoo.com	
Office Hours:	Sunday 11-12	Monday 11-12:30	Tuesday 11-12	Wedneso 11-12:30	· ·	

Third: Course Description

This course aims to Introduce students to wind and wind power history, Structure of the wind turbine, Impact of tower height. Maximum rotor efficiency and wind turbine generators. Turbine aerodynamics (how wind turbine works). Average power in the wind. Wind turbine electrical capacity. Wind power probability density function, Weiball, and Rayleigh statistics. Wind farms. Specific wind turbine performance calculation. Environmental concerns: noise, view, and landscape.

Fourth: Learning Source

Main Reference:	"Handbook on solar wind: effects, dynamics and interactions"		
Author: HANS E. JOH	IANNSON	Issue No.:	Publication Year: 2009
Additional Sources&Websites:	•		
Teaching Type:	Classroom	Laboratory Worksho	p 🖂 MS Teams 🗀 Moodle

Fifth: Learning Outcomes

Course Code	Course IntendedLearning Outcomes (CILOs)	Connection To Program ILOs Code
	Knowledge	
**K1	Thorough understanding of the fundamentals of the wind, wind turbine, and the main components of the wind turbine	*PK1
K2	Explain the wind turbine aerodynamics and identify the maximum rotor's efficiency.	PK2
К3	<u>Calculate</u> the average power in the wind and the annual energy using the probability density functions; Weiball and Rayleigh statistics.	PK3
	Skills	
***S1	Analyze the environmental impacts of wind energy such as; emissions, noise and visual impact	PS1
S2	Practice the calculation of the sound power level of wind turbines within the wind farms	PS2
	Competencies	
****C1	Apply the design criteria of the wind farms and determine the annual energy production of the wind farms.	PC1

^{*} P: Program, **K: knowledge, ***S: skills, ****C: competencies.

Sixth: Course Structure

Lecture Date	Intended Teaching Outcomes(ILOs)	Topics	Teaching Procedures*	TeachingMethods***	References***
13/10/2024	A1	Introduction to Wind & Wind Power History	General discussions	Discussion and problem Solving	Energy Engineering
15/10/2024	A1, A2	Introduction to Wind & Wind Power History	Review the previous lecture, then explain the current lecture	lecture, then explain the problem Solving	
17/10/2024	A2	Introduction to Wind & Wind Power History	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
20/10/2024	A1, A2	Wind Turbine Mechanism and its main Components	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
22/10/2024	A1, A2	Wind Turbine Mechanism and its main Components	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
24/10/2024	A2, B1	Wind Turbine Mechanism and its main Components	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
27/10/2024	A2, B1	Wind Turbine Mechanism and its main Components	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
29/10/2024	A1, A2, B1	Wind Turbine Mechanism and its main Components	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
31/10/2024	B1, C1	Wind Turbine Mechanism and its main Components	General discussions	Discussion and problem Solving	Energy Engineering
3/11/2024	A2	Power in the wind	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
5/11/2024	A2	Power in the wind	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
7/11/2024	B1 C1	Power in the wind	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
10/11/2024	B2, C1	Wind Turbine Generators	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
12/11/2024	B3, C1	Wind Turbine Generators	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
14/11/2024	B1 C1	Wind Turbine Generators	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
17/11/2024	B2, C1	Discrete Wind Histogram	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
19/11/2024	A1, A2	Discrete Wind Histogram	General discussions	Discussion and problem Solving	Energy Engineering
21/11/2024	A1, A2	Discrete Wind Histogram	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineeri

24/11/2024		Wind Power	Review the previous	Discussion and	Energy
24/11/2024	A1, A2	Probability Density	lecture, then explain the	problem Solving	Engineering
	711, 712	Functions	current lecture	problem borving	Liiginicering
26/11/2024		Wind Power	Review the previous	Discussion and	Energy
20/11/2024	B3, C1	Probability Density		problem Solving	Engineering
	b 3, C1	Functions	lecture, then explain the current lecture	problem Solving	Eligilieerilig
20/11/2024				D: ' 1	
28/11/2024	D1 G1	Wind Power	At least one exam will be	Discussion and	Energy
	B1 C1	Probability Density	held suddenly during the	problem Solving	Engineering
		Functions	semester		
1/12/2024		Wind Farms	Review the previous	Discussion and	Energy
	B1 C1		lecture, then explain the	problem Solving	Engineering
			current lecture		
3/12/2024		Wind Farms	Review the previous	Discussion and	Energy
	B2, C1		lecture, then explain the	problem Solving	Engineering
	52, 01		current lecture	proorem sorving	2
5/12/2024		Wind Farms	Review the previous	Discussion and	Energy
3/12/2024	B3, C1	Wind Lamis	lecture, then explain the	problem Solving	Engineering
	b 3, C1			problem solving	Engineering
0/10/0004		C:C: W': 175 1:	current lecture	Diag 1	
8/12/2024	D.1. G.1	Specific Wind Turbine		Discussion and	Energy
	B1 C1	Performance	General discussions	problem Solving	Engineering
		Calculations			
10/12/2024		Specific Wind Turbine	Review the previous	Discussion and	Energy
	A1, A2	Performance	lecture, then explain the	problem Solving	Engineering
		Calculations	current lecture		
12/12/2024		Specific Wind Turbine	Review the previous	Discussion and	Energy
	A1, A2	Performance	lecture, then explain the	problem Solving	Engineering
	111,112	Calculations	current lecture	proorem sorving	2118111411118
15/12/2024		Wind Turbine	Review the previous	Discussion and	Energy
13/12/2024	A1, A2	Aerodynamics	lecture, then explain the	problem Solving	Engineering
	A1, A2	Aerodynamics	-	problem solving	Engineering
17/12/2024		XXV: 17D 1:	current lecture	D: ' 1	Т
17/12/2024	10 D1	Wind Turbine	Review the previous	Discussion and	Energy
	A2, B1	Aerodynamics	lecture, then explain the	problem Solving	Engineering
			current lecture		
19/12/2024		Wind Turbine	Review the previous	Discussion and	Energy
	A2, B1	Aerodynamics	lecture, then explain the	problem Solving	Engineering
			current lecture		
22/12/2024		Optimizing Rotor	Review the previous	Discussion and	Energy
	A2, B1	Diameter and	lecture, then explain the	problem Solving	Engineering
	-,	Generator Rated Power	current lecture	1	68
24/12/2024		Optimizing Rotor	Review the previous	Discussion and	Energy
21/12/2027	A2, B1	Diameter and	lecture, then explain the	problem Solving	Engineering
	A2, D1	Generator Rated Power	current lecture	problem Solving	Liighteering
26/12/2024		Optimizing Rotor	Review the previous	Discussion and	Energy
	A2, B1	Diameter and	lecture, then explain the	problem Solving	Engineering
		Generator Rated Power	current lecture		
29/12/2024		Using Real Power	Review the previous	Discussion and	Energy
	A2, B1	Curves with Weibull	lecture, then explain the	problem Solving	Engineering
	, – -	Statistics	current lecture	1 6	5
31/12/2024		Using Real Power	Review the previous	Discussion and	Energy
J1/12/2027	A2 D1	Curves with Weibull	-	problem Solving	Engineering
	A2, B1		lecture, then explain the	problem solving	Engineering
0/1/0007		Statistics	current lecture	D: : 1	Г
2/1/2025		Using Real Power	Review the previous	Discussion and	Energy
	A7 D1	Curves with Weibull	lecture, then explain the	problem Solving	Engineering
	A2, B1	Statistics	current lecture	problem solving	Liigilicciilig

5/1/2025		Environmental impacts	Review the previous	Discussion and	Energy
	A2, B1	of wind turbine;	lecture, then explain the	problem Solving	Engineering
	A2, D1	emissions, noise and	current lecture		
		visual impact.			
7/1/2025		Environmental impacts	Review the previous	Discussion and	Energy
	A2, B1	of wind turbine;	lecture, then explain the	problem Solving	Engineering
	A2, D1	emissions, noise and	current lecture		
		visual impact.			
9/1/2025		Environmental impacts	Review the previous	Discussion and	Energy
	A2, B1	of wind turbine;	lecture, then explain the	problem Solving	Engineering
	A2, D1	emissions, noise and	current lecture		
		visual impact.			
12/1/2025		Calculation of the	Review the previous	Discussion and	Energy
	A2, B1	sound level of the wind	lecture, then explain the	problem Solving	Engineering
	A2, D1	farm and to evaluate	current lecture		
		the wind farms' noise.			
14/1/2025		Calculation of the	Review the previous	Discussion and	Energy
	A2, B1	sound level of the wind	lecture, then explain the	problem Solving	Engineering
	A2, D1	farm and to evaluate	current lecture		
		the wind farms' noise.			
16/1/2025	·	Calculation of the	Review the previous	Discussion and	Energy
	A2, B1	sound level of the wind	lecture, then explain the	problem Solving	Engineering
	A2, D1	farm and to evaluate	current lecture		
		the wind farms' noise.			

^{*} Learning procedures: (Face-to-Face, synchronous, asynchronous). * * Teaching methods: (Lecture, video....). ** * Reference: (Pages of the book, recorded lecture, video....).

Seventh: Assessment methods

Methods	Grade	Date	Platform	CLO'S
First Exam	20	Fixed by the Department	Classroom	K,K
Second Exam	20	Fixed by the Department	Classroom	S,S
Assign, Quizzes &Participation	10	During Semester	Classroom+Moodle	All CLO'S
Final Exam	50	Fixed by the Department	Classroom	All CLO'S

Eighth: Course Policies

- All course policies are applied on all teaching patterns (online, blended, and face-to-face Learning) as follows:
- a. Punctuality.
- b. Participation and interaction.
- c. Attendance and exams.
- Academic integrity: (cheating and plagiarism are prohibited).

Approved by:	Name	Date	Signature
Head of Department	Dr. Ayman Amer	2024/11/20	-1,-
Faculty Dean	Prof .Taiseer Alghanim	2024/11/20	2

