Faculty: Engineering Technology

Department: Energy Program: Bachelor Degree

Academic year: 2024 - 2025 Semester: 1nd (Fall)

Course Plan

First: Course Information

Course No. 0906410	Course Title: Nuclear Reactions	Credit Hours:3
Prerequisite: 0300122	Section No.: 1	Lecture Time: 12-11,Sun,Tue,and Thu
Type Of Course:	 □ Obligatory Faculty Requirement Elective □ ObligatoryUniversity Requirement □ Course Elective SpecialtyRequirementObli 	☐ University Requirement ☐ FacultyRequirement ☐ gatorySpecialization requirement
Type of Learning:	Face-to-Face Learning BlendedLearning(2 Face-to-Face + 1Asynch Online Learning (2 Synchronous+1 Asynchi	

Second: Instructor's Information

Name: Dr. Ayman Amer			Academic Rank: Assistant Professor		
Office Number:328 l		Frt Number 2051		E-mail: aamer@zu.edu.jo	
Office Hours:	Sunday 10-11	Monda 1-2	y Tuesday 10-11	Wedneso 1-2	day Thursday 10-11

Third: Course Description

Energetic and kinetics of nuclear reactions and radioactive decay, fission, and reactions of low – energy neutrons; properties of the fission products and the actinides; nuclear models and transition probabilities; interaction of radiation with matter.

Fourth: Learning Source

Main Reference:	Basic nuclear engineering by a . foster and j. wright		
Author: a . foster and	j. wright	Issue No.:	Publication Year: (2005)
Additional Sources&Websites:			
Teaching Type:	Classroom	Laboratory	op 🖂 MS Teams 🗀 Moodle

Fifth: Learning Outcomes

Course Code	Course IntendedLearning Outcomes (CILOs)	Connection To Program ILOs Code			
	Knowledge				
**K1	Explain the meaning of atomic and nuclear physics and interactions.	*PK1			
K2	Explain the meaning of radiation physic and detection.	PK2			
К3	<u>Calculate</u> nuclear thermal efficiency and cooling.	PK3			
Skills					
***S1	Calculate criticality, control, and nuclear fuel cycle.	PS1			
S2	<u>Calculate</u> reaction cross-sections , and moderation	PS2			
S3	Apply characteristics of nuclear fuel materials	PS3			
	Competencies				
****C1	<u>Design</u> fission and fusion reactor physics plant	PC1			

^{*} P: Program, **K: knowledge, ***S: skills, ****C: competencies.

Sixth: Course Structure

Lecture Date	Intended Teaching Outcomes(ILOs)	Topics	Teaching Procedures*	TeachingMethods***	References***
13/10/2024	A1	Introduction to atomic and nuclear physics	General discussions	Discussion and problem Solving	Energy Engineering
15/10/2024	A1	Introduction to atomic and nuclear physics	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
17/10/2024	A1	Introduction to atomic and nuclear physics	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
20/10/2024	A1	Introduction to atomic and nuclear physics	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
22/10/2024	A1	Introduction to atomic and nuclear physics	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineerin
24/10/2024	A1	Introduction to atomic and nuclear physics	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
27/10/2024	A1,A2	Atomic structure	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
29/10/2024	A1,A2	Atomic structure	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
31/10/2024	A1,A2	Atomic structure	General discussions	Discussion and problem Solving	Energy Engineering
3/11/2024	A1,A2	Atomic structure	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
5/11/2024	A1,A2	Atomic structure	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
7/11/2024	A1,A2	Atomic structure	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
10/11/2024	A1,A2	Atomic structure	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineerin
12/11/2024	A1,A2	Atomic structure	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
14/11/2024	A1,A2	Atomic structure	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin
17/11/2024	A2,B1	Decay of radioactive nuclei Exam1 (up to end of week 5)	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin

19/11/2024	A2,B1	Decay of radioactive nuclei Exam1 (up to end of	General discussions	Discussion and problem Solving	Energy Engineering
21/11/2024	A2,B1	week 5) Decay of radioactive nuclei Exam1 (up to end of week 5)	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
24/11/2024	A2,B1	Decay of radioactive nuclei Exam1 (up to end of week 5)	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
26/11/2024	A2,B1	Decay of radioactive nuclei Exam1 (up to end of week 5)	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
28/11/2024	A2,B1	Decay of radioactive nuclei Exam1 (up to end of week 5)	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
1/12/2024	A2,B1	Decay of radioactive nuclei Exam1 (up to end of week 5)	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
3/12/2024	A2,B1	Decay of radioactive nuclei Exam1 (up to end of week 5)	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
5/12/2024	A2,B1	Decay of radioactive nuclei Exam1 (up to end of week 5)	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
8/12/2024	A2,B1	Decay of radioactive nuclei Exam1 (up to end of week 5)	General discussions	Discussion and problem Solving	Energy Engineering
10/12/2024	A2,B1	Decay of radioactive nuclei Exam1 (up to end of week 5)	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
12/12/2024	A2,B1	Decay of radioactive nuclei Exam1 (up to end of week 5)	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering

15/12/2024	B1,B2	Nuclear reactions	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
17/12/2024	B1,B2	Nuclear reactions	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
19/12/2024	B1,B2	Nuclear reactions	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
22/12/2024	B1,B2	Nuclear reactions	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
24/12/2024	B1,B2	Nuclear reactions	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
26/12/2024	B1,B2	Nuclear reactions	General discussions	Discussion and problem Solving	Energy Engineering
29/12/2024	B2,B3	Radiation detection	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
31/12/2024	B2,B3	Radiation detection	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2/1/2025	B2,B3	Radiation detection	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
5/1/2025	B2,B3	Radiation detection	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
7/1/2025	B2,B3	Radiation detection	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
9/1/2025	B2,B3	Radiation detection	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
12/1/2025	B3,B4	Health physics Exam2 (up to end of week 11)	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
14/1/2025	C1	Neutron interactions	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
16/1/2025	C1	Neutron interactions	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering

^{*} Learning procedures: (Face-to-Face, synchronous, asynchronous). * * Teaching methods: (Lecture, video....). ** * Reference: (Pages of the book, recorded lecture, video....).

Seventh: Assessment methods

Methods	Grade	Date	Platform	CLO'S
First Exam	20	Fixed by the Department	Classroom	K,K
Second Exam	20	Fixed by the Department	Classroom	S,S
Assign, Quizzes &Participation	10	During Semester	Classroom+Moodle	All CLOs
Final Exam	50	Fixed by the Department	Classroom	All CLOs

Eighth: Course Policies

- All course policies are applied on all teaching patterns (online, blended, and face-to-face Learning) as follows:
 - a. Punctuality.
 - b. Participation and interaction.
 - c. Attendance and exams.
- Academic integrity: (cheating and plagiarism are prohibited).

Approved by:	Name	Date	Signature
Head of Department	Dr. Ayman Amer	20/11/2024	Prof.
Faculty Dean	Prof .Taiseer Alghanim	20/11/2024	Mr.

issue:02

Issue Date:11/7/2021