| Faculty: Faculty of Science | | |---------------------------------------|-------------------------| | Department: Service Courses Un | nit Program: Bachelor's | | Academic year: S | emester: | # **Course Plan** #### **First: Course Information** | Course No.: 0300122 | Course Title: General Physics 2 | Credit Hours: 3 | |-----------------------|--|---| | Prerequisite: 0300121 | Section No.: | Lecture Time: | | Type Of | | ective University Requirement | | Course: | □ Obligatory University Requirement □ Course Elective Specialty Requirement □ Ob | culty Requirement ligatory Specialization requirement | | Type of
Learning: | ■ Face-to-Face Learning □ Blended Learning(2 Face-to-Face + 1Asynch □ Online Learning (2 Synchronous+1 Asynch | | ### **Second: Instructor's Information** | Name: | Academic Rank: | | | |---------------|----------------|---------------|--| | Email: | Office No.: | Phone Number: | | | Office Hours: | | | | # **Third: Course Description** Electric charge, Electric Force, Electric Field, Gauss law, Electric potential, Capacitance and dielectrics, Current and resistance, Ohm's law, Electromotive Force, DC Circuits, Kirchhoff's law, Magnetic field, Sources of Magnetic fields. issue:03 Issue Date: 20/10/2023 ## **Fourth: Course Objectives** #### This course has several rather broad goals. They include that you: - 1. To provide an appreciation of the nature of physics, its methods, and its goals. - 2. To provide a foundation in physics necessary for further study in science, engineering and technology. - **3.** To engage in productive communication and collaboration with peers. - **4.** To contribute to the development of the student's thinking process through the understanding of the theory and application of this knowledge to the solution of practical problems. #### Fifth: Learning Source | Main Reference: | Physics for Scie
Modern Physic | entists and Engineers with s. | | |---------------------------------|---|--|--| | Author: : R. A. Serwa
Jewett | ny and John W. | Issue No.: 9th edition | Publication Year: 2014 | | Additional
Sources&Websites: | Universit Principle https://magnet https://magnet https://magnet https://magnet https://magnet https://magnet- | entals of Physics, David Halliday, Rolly Physics, F.Sears, M. Zemansky, and sof Physics, J.B Marion and W.F. How Some sof Physics of Physi | d H. Yaoung. brnyak -022-physics-ii-electricity-and- 85/lectures/lecture01/lecture01. | | Teaching Type: | ■ Classroom | ☐ Laboratory ☐ Workshop ☐ | ☐ MS Teams ■ Moodle | # **Sixth: Learning Outcomes** | Level
descriptor
according
to (JNQF) | CILOs
Code | CILOs | Associated
PILOs Code
Choose one
PILO for each
CILO* | Assessment
method**
Choose at
least two
methods | State the total score identified for each CILO | |---|---------------|--|--|---|--| | Knowledge | K1 | Basic knowledge: Defining: Electric Field, Electric potential, Capacitance and dielectric materials, Magnetic field and its sources. | PK1 | First, second
and Final
Exams | 14 | | Kı | K2 | Basic Factual Knowledge:
Defining Coulomb's law, gauss's
law, Kirchhoff's rules, ohm's | PK2 | First, second
and Final
Exams | 16 | | | | law, Biosavart law and Ampere's law. | | | | |--------|----|---|-----|-------------------------------------|----| | | К3 | Concepts and Theories: Expressing gauss's law, Kirchhoff's rules, and ohm's law, Identifying law of Kirchhoff's rules, ohm's law and electric power to discipline, Express electric and magnetic field of different sources. | PK3 | First, second
and Final
Exams | 10 | | | K4 | Contemporary Trends, Problems and Research: Exemplifying the series and parallel DC circuits, Choosing law of Kirchhoff's rules, ohm's law and electric power to discipline, | PK4 | First, second
and Final
Exams | 10 | | | S1 | Problem solving skills: Students solve problems on the board. I giving them group assignments and home works and encourage group projects, but I can say that technology has become an integral part of their lives, and use computer programs to draw and solve mathematical equations, derivation and integration and they feel confident in this area. | PS1 | First, second
and Final
Exams | 20 | | Skills | S2 | Modeling and Design: Construct circuits using ohm's law, Kirchhoff's rules for solving problems and design. | PS2 | First, second
and Final
Exams | 12 | | | S3 | Application of Methods and Tools: Integrating the concepts and principles of the electric field and its applications, Interpret any phenomena according to physical laws | PS3 | First, second
and Final
Exams | 10 | | | S4 | Specific cognitions skill: A range of cognitive and practical skills required to | PS4 | First, second
and Final
Exams | 8 | | | | generate solutions to specific problems in one of the physical fields. | | | | |--------------|----|--|-----|------------|-----| | | C1 | Analytic skills: Relate the theoretical information to practical work to increase the understanding of the basic knowledge. | PC1 | Assignment | 2.5 | | | C2 | Strategic Thinking: Formulate plans designed to achieve maximum useful of the special techniques that the student uses to solve the mechanical problems. | PC2 | Assignment | 2.5 | | Competencies | С3 | Creative thinking and innovation: Devise easy methods to solve the mechanical Problems | PC3 | Assignment | 2.5 | | | C4 | Communication: 1. Students will be able to communicate with teacher, ask questions, solve problems, and use computers. 2. Students ask questions during the lecture, work in groups, and communicate with each other and with me electronically, and periodically visit the sites I recommended. | PC4 | Assignment | 2.5 | ^{*}Refer to document () and page 2 in document () issue:03 Issue Date:20/10/2023 ^{**} Refer to document () **80% of the students must achieve the minimum acceptable percentage or higher for each CILO # **Seventh: Course Structure** | Lecture Date | Intended Teaching Outcomes(ILO s) | Topics | Teaching
Procedures* | Teaching
Methods*** | References*** | |--------------|-----------------------------------|--|-------------------------|---|---------------| | | K1 S3C1 C4
C2 | Introduction | Face-to-Face | Discussion | Text book | | | K1 S3C1 C4
C2 | 23.1 Properties of
Electric Charges
23.2 Charging
Objects by
Induction | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | K1 S3C1 C4
C2 | 23.3 Coulomb's
Law
23.4 Analysis
Model: Particle in
a Field (Electric) | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | K1 S3C1 C4
C2 | 23.5 Electric Field
of a Continuous
Charge
Distribution | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | K1 S3C1 C4
C2 | 23.5 Electric Field
of a Continuous
Charge
Distribution | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | K1 S3C1 C4
C2 | 23.6 Electric Field
Lines
23.7 Motion of a
Charged Particle
in a Uniform
Electric Field | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | K1 S3C1 C4
C2 | Solving Problem
of Electric field | Face-to-Face | Homework 1 (2 marks): pages: 716-724 text problems: (3,11, 25, 29, 33,37, 38, 39, 44, 49, 52) | Text book | | | K1 K2S1S3 S4
C2 C4 | 24.1 Electric Flux | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | K1 K2S1S3 S4
C2 C4 | 24.2 Gauss's Law | Face-to-Face | Lecture demonstration | Text book | | | K1 K2S1S3 S4
C2 C4 | 24.3 Application
of Gauss's Law to
Various Charge | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | | Distributions | | | | |--------|------------------|--|--------------|---|-----------| | K1 K2S | 1S3 S4
C2 C4 | 24.4 Conductors
in Electrostatic
Equilibrium | Face-to-Face | Lecture
demonstration
and discussion | Text book | | K1 K2S | 1S3 S4
C2 C4 | Solving Problem Of Gauss Law | Face-to-Face | Homework 2
(2 marks):
Pages 740-745
text problems:
(2,6, 9, 13, 19,
24, 27, 29, 30,
44, 50) | Text book | | K1S3 | S4 C1
C4 | 25.1 Electric Potential and Potential Difference | Face-to-Face | Lecture
demonstration
and discussion | Text book | | K1S3 | S4 C1
C4 | 25.2 Potential Difference in a Uniform Electric Field | Face-to-Face | Lecture
demonstration
and discussion | Text book | | K1S3 | S4 C1
C4 | 25.3 Electric Potential and Potential Energy Due to Point Charges | Face-to-Face | Lecture
demonstration
and discussion | Text book | | K1S3 | S4 C1
C4 | 25.4 Obtaining the Value of the Electric Field from the Electric Potential | Face-to-Face | Lecture
demonstration
and discussion | Text book | | K1S3 | S S4 C1
C4 | 25.5 Electric Potential Due to Continuous Charge Distributions | Face-to-Face | Lecture
demonstration
and discussion | Text book | | K1S3 | C4 | 25.6 Electric Potential Due to a Charged Conductor | Face-to-Face | Lecture
demonstration
and discussion | Text book | | K1S3 | S4 C1
C4 | Solving problems
of the Chapter (
Electric potential) | Face-to-Face | Homework 3
(2 marks):
Pages: 769-776
text problems:
(2, 13, 27, 39,
44,50) | Text book | | | 2 S3 S4
3C2C1 | 26.1 Definition of Capacitance 26.2 Calculating Capacitance | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | | Ţ | | | | |---|-------------------------|--|--------------|---|-----------| | | K3 K2 S3 S4
C3C2C1 | 26.3Combinations
of Capacitors
26.4 Energy
Stored in a
Charged Capacitor | Face-to-Face | Lecture
demonstration
and discussion | Text book | | _ | K3 K2 S3 S4
C3C2C1 | 26.5 Capacitors with Dielectrics | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | K3 K2 S3 S4
C3C2C1 | 26.7 An Atomic
Description of
Dielectrics 27.1
Electric Current | Face-to-Face | Homework 4
(2 marks):
Pages: 801-807
text problems:
(4, 5, 7, 21, 23,
37, 44) | Text book | | | K1S3 S4 C1
C4 S2 | 27.2 Resistance
27.3 A Model for
Electrical
Conduction | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | K1S3 S4 C1
C4 S2 | 27.4 Resistance and Temperature | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | K1S3 S4 C1
C4 S2 | 27.6 Electrical Power Solving problems of Current and resistance | Face-to-Face | Homework 5
(2 marks):
pages: 826-831
text problems:
(3, 9, 15, 26,
29, 41) | Text book | | | K2 K3 K4 S1
S2 S3 C3 | 28.1
Electromotive
Force
28.2 Resistors in
Series and Parallel | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | K2 K3 K4 S1
S2 S3 C3 | 28.3 Kirchhoff's
Rules | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | K2 K3 K4 S1
S2 S3 C3 | 28.4 RC Circuits | Face-to-Face | Lecture
demonstration
and discussion | Text book | | | K2 K3 K4 S1
S2 S3 C3 | 28.5 Household Wiring and Electrical Safety Solving problems of Chapter Direct current and resistances | Face-to-Face | Homework 6
(2 marks):
pages: 855-867
text problems:
(1, 5, 7, 9, 13,
15, 24, 37) | Text book | | | K3 K4 S3 S4
C3C2C1 | 29.1 Analysis
Model: Particle in
a Field (Magnetic) | Face-to-Face | Lecture
demonstration
and discussion | Text book | | K3 K4 S3 S
C3C2C | | Face-to-Face | Lecture
demonstration
and discussion | Text book | |---------------------|--|--------------|---|-----------| | K3 K4 S3 S
C3C2C | | Face-to-Face | Lecture
demonstration
and discussion | Text book | | K3 K4 S3 S
C3C2C | Force Acting on a Current-Carrying Conductor | Face-to-Face | Homework 7
(2 marks):
pages: 895-903
text problems:
(2, 3, 8, 11) | Text book | | K1S3 S4 C
C4 S | | Face-to-Face | Lecture
demonstration
and discussion | Text book | | K1S3 S4 C
C4 S | | Face-to-Face | Lecture
demonstration
and discussion | Text book | | K1S3 S4 C
C4 S | | Face-to-Face | Lecture
demonstration
and discussion | Text book | | K1S3 S4 C
C4 S | | Face-to-Face | Lecture
demonstration
and discussion | Text book | | K1S3 S4 C
C4 S | | Face-to-Face | Homework 8
(2 marks):
pages: 925-934
text problems:
(2, 3, 7, 19, 41) | Text book | ^{*} Learning procedures: (Face-to-Face, synchronous, a synchronous). * * Teaching methods: (Lecture, video....). ** * Reference: (Pages of the book, recorded lecture, video....). ## **Eighth: Assessment methods** | Methods | Online
Learning | Blended
Learning | Face-To-Face
Learning | Measurable
Course (ILOs) | |----------------------------|--------------------|---------------------|--------------------------|-----------------------------| | First Exam | 0 | 0 | 20 | | | Second Exam | 0 | 0 | 20 | | | Mid-term Exam | 0 | 0 | 0 | | | Assignment | 0 | 0 | 10 | | | Asynchronous
Activities | 0 | 0 | 0 | | | Final Exam | 0 | 0 | 50 | | | Methods | Direct
Teaching | *State the score identified for each CILO for each method of assessment out of 100 **If any CILO will not be assessed in the course, mark NA. | | | | | | | | | | | | |-------------|--------------------|---|----|----|----|-----------|----|----|-----------|-----|-----|-----|-----| | | | K1 | К2 | КЗ | К4 | S1 | S2 | S3 | S4 | C1 | C2 | С3 | C4 | | First Exam | 20 | 4 | 3 | 2 | 2 | 5 | 2 | 2 | 2 | | | | | | Second Exam | 20 | 4 | 3 | 2 | 2 | 5 | 2 | 2 | 2 | | | | | | Final Exam | 50 | 6 | 10 | 6 | 6 | 10 | 8 | 6 | 4 | | | | | | Assignment | 10 | | | | | | | | | 2.5 | 2.5 | 2.5 | 2.5 | | Total | 100 | 14 | 16 | 10 | 10 | 20 | 12 | 10 | 8 | 2.5 | 2.5 | 2.5 | 2.5 | ## **Ninth: Course Policies** - All course policies are applied on all teaching patterns (online, blended, and face-to-face Learning) as follows: - a. Punctuality. - b. Participation and interaction. - c. Attendance and exams. - Academic integrity: (cheating and plagiarism are prohibited). | Approved by: | Name | Date | Signature | |--------------------|------|------|-----------| | Head of Department | | | | | Faculty Dean | | | |