Faculty: Engineering Technology

Department: Energy Program: Bachelor Degree

Academic year: 2022-2023 Semester: 2^{st} (Fall)

Course Plan

First: Course Information

Course No. 0906454	Course Title: Wind Energy	Credit Hours:3		
Prerequisite: 0906353+0904364	Section No.: 1	Lecture Time: 12-1,Sun,Tue,and Thu		
Type Of Course:	 □ Obligatory Faculty Requirement Electiv □ ObligatoryUniversity Requirement □ Course Elective SpecialtyRequirementObli requirement 	e □ University Requirement □ FacultyRequirement gatorySpecialization		
Type of Learning:	Face-to-Face Learning BlendedLearning(2 Face-to-Face + 1Asynchronous) Online Learning (2 Synchronous+1 Asynchronous)			

Second: Instructor's Information

Name: Dr. Mais Alzgool			Academic Rank: Assistant Professor			
Office Number:136 l			Ext. Number:2039		E-mail: maisalzgool@yahoo.com	
Office Hours:	Sunday 11-12	Monday 11-12:30	Tuesday 11-12	Wedneso 11-12:30	· ·	

Third: Course Description

Introduction to wind and wind power history. Structure of the wind turbine. Impact of tower height. Maximum rotor efficiency. Introduction to wind turbine generators. Turbine aerodynamics (how wind power works). Average power in the wind. Wind turbine electrical capacity. Wind power probability density function, Weiball and Rayleigh statistics. Wind farms. Specific wind turbine performance calculation. Environmental concerns: noise, view and landscape.

Fourth: Learning Source

Main Reference:	"Handbook on sinteractions"	olar wind: effects, dynamics and	
Author: HANS E. JOH	IANNSON	Issue No.:	Publication Year: 2009
Additional Sources&Websites:	•		
Teaching Type:	Classroom	Laboratory Worksho	p 🖂 MS Teams 🗀 Moodle

Fifth: Learning Outcomes

Course Code	Course IntendedLearning Outcomes (CILOs)	Connection To Program ILOs Code		
	Knowledge			
**K1	Understand the impact of tower height	*PK1		
K2	Define the maximum rotor efficiency.	PK2		
К3	Explain the wind turbine aerodynamics.	PK3		
	Skills			
***S1	Define the wind and the power in the wind. Understand the structure of the wind turbine and its conversion principle.	PS1		
S2	Understand the impact of tower height on the output power. And defining the maximum rotor efficiency of the wind turbine.	PS2		
S3	Analyze the average power in the wind and the wind turbine electrical capacity. Calculate the wind power probability density functions, using Weiball and Rayleigh statistics.	PS3		
S4	Understand the concept of wind farms and its environmental impact.	PS4		
S5	Specific wind turbine performance calculation.	PS5		
Competencies				
****C1	Explain the fundamentals of wind and wind power.	PC1		
C2	Determine the Structure of the wind turbine	PC2		

^{*} P: Program, **K: knowledge, ***S: skills, ****C: competencies.

Sixth: Course Structure

Lecture Date	Intended Teaching Outcomes(ILOs)	Topics	Teaching Procedures*	TeachingMethods***	References***
5/3/2023	0	Introduction to Wind & Wind Power History	General discussions	Discussion and problem Solving	Energy Engineering
7/3/2023	1	measuring system	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
9/3/2023	1	Introduction to Wind & Wind Power History	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
12/3/2023	1	measuring system	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
14/3/2023	2	Introduction to Wind & Wind Power History	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
16/3/2023	1 & 2	measuring system	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
19/3/2023	3	Introduction to Wind & Wind Power History	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
21/3/2023	3	measuring system	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
23/3/2023	3	Introduction to Wind & Wind Power History	General discussions	Discussion and problem Solving	Energy Engineering
26/3/2023	3	measuring system	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
28/3/2023	3	Introduction to Wind & Wind Power History	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
30/3/2023	4	measuring system	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
2/4/2023	3 & 4	Wind Turbine	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
4/4/2023	3 & 4	Mechanism and its main	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
6/4/2023	4	Components	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
9/4/2023	5	Wind Turbine	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
11/4/2023	5	Mechanism and its main	General discussions	Discussion and problem Solving	Energy Engineering
13/4/2023	5	Components	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
16/4/2023	5	Wind Turbine	Review the previous lecture, then explain the current lecture	Discussion and problem Solving Discussion and problem	Energy Engineering
18/4/2023	5	Mechanism and its main	Review the previous lecture, then explain the current lecture	Solving	Energy Engineering
20/4/2023	4	Components	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
27/4/2023	3 & 4	Wind Turbine	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
30/4/2023	6	Mechanism and its main	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering

2/5/2023	4	Power in the wind calculations	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
4/5/2023	3 & 4	and the Combined Temperature and Altitude Corrections for Air Density	General discussions	Discussion and problem Solving	Energy Engineering
7/5/2023	3 & 4	Power in the wind calculations and the	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
9/5/2023	4	Impact of Tower Height. And the Maximum Rotor Efficiency	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
11/5/2023	6	Impact of Tower Height. And the Maximum Rotor Efficiency	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
14/5/2023	4	Calculation of the average Power in the Wind Using the Discrete Wind Histogram	At least one exam will be held suddenly during the semester	Discussion and problem Solving	Energy Engineering
16/5/2023	6	Calculation of the average Power in the Wind Using the Discrete Wind Histogram	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
18/5/2023	4	Wind Power Probability Density Functions	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
21/5/2023	7	Wind Power Probability Density Functions	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
23/5/2023	8,9,10	Average Power in the Wind with Rayleigh Statistics	General discussions	Discussion and problem Solving	Energy Engineering
28/5/2023	8,9,10	Average Power in the Wind with Rayleigh Statistics	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineerin _t
30/5/2023	8,9,10	Specific Wind Turbine Performance Calculations	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering

1/6/2023	8,9,10	Specific Wind Turbine	Review the previous lecture, then explain the current lecture	Discussion and problem Solving	Energy Engineering
		Performance	-		
		Calculations			
4/6/2023		Idealized Wind		Discussion and problem	Energy Engineering
	10	Turbine Power	At least one exam will be held suddenly during the semester	Solving	
		Curve	suddenly during the semester		
6/6/2023		And Wind Speed	Review the previous lecture, then	Discussion and problem	Energy Engineering
	10 Cu	Cumulative	explain the current lecture	Solving	
	10	Distribution			
		Function			

^{*} Learning procedures: (Face-to-Face, synchronous, asynchronous). * * Teaching methods: (Lecture, video....). ** * Reference: (Pages of the book, recorded lecture, video....).

Seventh: Assessment methods

Methods	Grade	Date	Platform	CLO'S
First Exam	20	Fixed by the Department	Classroom	
Second Exam	20	Fixed by the Department	Classroom	
Assign, Quizzes &Participation	10	During Semester	Classroom+Moodle	
Final Exam	50	Fixed by the Department	Classroom	

Eighth: Course Policies

- All course policies are applied on all teaching patterns (online, blended, and face-to-face Learning) as follows:
 - a. Punctuality.
 - b. Participation and interaction.
 - c. Attendance and exams.
- Academic integrity: (cheating and plagiarism are prohibited).

Approved by:	Name	Date	Signature
Head of Department	Dr. Ayman Amer	2023/3/5	[F]
Faculty Dean	Prof .Taiseer Alghanim	2023/3/5	e de

