Faculty: Information Technolo		
Department: Data Science and Artificial Intelligence	Program: Bachelor	امد ازراع روانی از
Academic year:	Semester:	VA UNIVERS

Course Plan

First: Course Information

Course No.: 1505415	Course Title: Applied Deep Learning		Credit Hours: 3		Theoretical: 3	Practical: 0	
Prerequisite No. and Title: - 1505311 Machine Learning		Section No.:		Lecture Time:			
Level in JNQF	7						
Type Of Course:	 Obligatory Univer Obligatory Facult Obligatory Special Ancillary course 	sity Requ y Require lization R	irement ement Requirement	 Elective University Requirement Elective Faculty Requirement Elective Specialization Requirement 			
Type of Learning:	 Face-to-Face Learning Blended Learning (2 Face-to-Face + 1 Asynchronous) Online Learning (2 Synchronous+ 1 Asynchronous) 						

Second: Instructor's Information

Course Coordinator									
Name:			Academic Rank:						
Office Number	:	Extension Number:	Email:						
Course Instruc	Course Instructor								
Name: Dr. Ess	am Al Daou	ıd	Academic Rank:						
Office Number	:	Extension Number:	Email:						
Office Hours:	Sundo	ay Monday	Tuesday Wednesday Thursday						

Third: Course Description

This course focuses on learning complex, hierarchical feature representations from raw data. The dominant method for achieving this, artificial neural networks, has revolutionized the processing of data (e.g. images, videos, text, and audio) as well as decision-making tasks (e.g. game-playing). Its success has enabled a tremendous amount of practical commercial applications and has had significant impact on society.

Fourth: Course Objectives

- 1. Develop practical expertise in deep learning by actively engaging with popular frameworks such as TensorFlow or PyTorch. Students will build and train basic neural networks, gaining proficiency in applications like image classification and text generation through hands-on exercises.
- 2. Master the mathematical and algorithmic foundations of deep learning. Delve into concepts including gradient descent, backpropagation, and diverse neural network architectures like Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), fostering a robust theoretical understanding.
- 3. Apply deep learning to address real-world challenges across domains such as computer vision, natural language processing, and robotics. Students will learn to identify problems suitable for deep learning solutions, and apply their knowledge to implement solutions using real-world datasets.
- 4. Cultivate critical thinking skills essential for navigating the complexities of deep learning algorithms and data. Encourage students to analyze model limitations, address biases, and consider ethical implications, fostering a holistic approach to problem-solving in challenging scenarios.
- 5. Instill a mindset of continuous learning by keeping students informed about the latest advancements in deep learning. This objective encourages staying abreast of current research trends, emerging architectures, and best practices in the dynamic field of deep learning.

Fifth: Learning Outcomes

Level descriptor according to (JNQF)	CILOs Code	CILOs If any CLO will not be assessed in the course, mark NA.	Associated PILOs Code Choose one PILO for each CILO*	Assessment method Choose at least two methods
	K1	Recall and explain the fundamental concepts of deep learning, including artificial neural networks, gradient descent, and loss functions.	PK1	 Mid-term Exam Final Exam
Knowledge	K2	Repeat the mathematical notation and equations used to describe deep learning algorithms.	PK1	 Mid-term Exam Final Exam
	K3	Recognize the trends and challenges of deep learning model training and deployment.	PK4	 Quizzes Mid-term Exam Final Exam
	S1	Employ data preprocessing and regularization techniques to improve model accuracy and generalization.	PS1	 Mid-term Exam Final Exam
	S2	Apply deep learning frameworks (TensorFlow, PyTorch, etc.) to build and train models for specific tasks.	PS2	 Mid-term Exam Final Exam
Skills	S 3	Develop a plan for evaluating and deploying a deep learning model in a real-world scenario.	PS3	 Mid-term Exam Final Exam
	S4	Analyze the results of deep learning experiments to identify trends and draw conclusions.	PS2	 Quizzes Mid-term Exam Final Exam
	S5	Recognize common errors and challenges encountered during deep learning model training and deployment.	PS5	 Quizzes Mid-term Exam Final Exam
Competencies	C1	Collaborate effectively with teammates in a project-based setting to design, implement, and evaluate a deep learning model.	PC1	ParticipationProject
Competencies	C2	Exhibit leadership in technical discussions and problem-solving activities related to deep learning.	PC2	 Participation Project

*CILOs: Course Intended Learning Outcomes; PILOs: Program Intended Learning Outcomes; For each CILO, the PILO could be the same or different.

Sixth: Learning Resources

Main Reference:	Python Deep	Python Deep Learning								
Author: Ivan Vasilev		Issue No.2 nd ed.	Print:	Publication Year: 2019						
Additional Sources and Websites:	 Ian C Leart Jasot in Py 	 Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, An MIT Press book,2016 Jason Brownlee, Develop Deep Learning Models for Natural Language in Python Jason Brownlee, 2017 								
Teaching Type:	Classroon	n 🗖 Laboratory	U Workshop	MS Teams Moodle						

Seventh: Course Structure

Week	Course Intended Teaching Outcomes (CILOs)	Topics	Teaching Procedures*	Teaching Methods**	References***
Week 1	K1, K2, K3, S1, S2	Introduction Python Revision	Face-to-Face	Lecture, In-class Questions	
Week 2	K1, K2, K3, S1, S2	Numpy and pandas	Face-to-Face	Lecture, In-class Questions	Chapter 2
Week 3	K1, K2, K3, S3, S5	Neural Network Sklearn, Keras and Tenserflow	Face-to-Face	Lecture, In-class Questions	Chapter 3
Week 4	K1, K2, K3, S1, S2	Convolutional Neural Network	Face-to-Face	Lecture, In-class Questions	Chapter 5
Week 5	K1, K2, K3, S3, S5	CNN Applications	Face-to-Face	Lecture, In-class Questions	Chapter 6
Week 6	K1, K2, K3, S3, S5	Recurrent Neural Network, RNN Applications	Face-to-Face	Lecture, In-class Questions	Chapter 6 & Chapter 7
Week 7	K1, K2, K3, S3, S5	Transfer Learning	Face-to-Face	Lecture, In-class Questions	Chapter 7
Week 8	K1, K2, K3, S1, S2	Encoder Decoder	Face-to-Face	Lecture, In-class Questions	Chapter 7
		Midtern	n Exams		
Week 9	K1, K2, K3, S3, S5	Encoder-Decoder Applications	Face-to-Face	Lecture, In-class Questions	Chapter 7
Week 10	K1, K2, K3, S1, S2	Transformers	Face-to-Face	Lecture, In-class Questions	Chapter 7

Issue Date: 20/10/2023

Week 11	K1, K2, K3, S3, S5	Transformers Applications	Face-to-Face	Lecture, In-class Questions	Chapter 7		
Week 12	K1, K2, K3, S1, S2	Large Language Models	Face-to-Face	Lecture, In-class Questions	Chapter 8		
Week 13	K3, S3, S5	Large Models Fine Tuning (LORA)	Face-to-Face	Lecture, In-class Questions	Chapter 8		
Week 14	K3, S1 S2, C1, C2	QLORA & Revision and Discussion	Face-to-Face	Lecture, In-class Questions	Chapter 8		
Final Exams							

*Teaching procedures: (Face-to-Face, synchronous, asynchronous). *** Reference: (Pages of the book, recorded lecture, video....) ** Teaching methods: (Lecture, video....).

Eighth: Assessment Methods

Methods On Lear	Online Blended Learning Learning	Face-To- Face	Specific Course Output to be assessed **If any CILO will not be assessed in the course, mark NA.										
		U	0	Learning	К1	K2	К3	S1	S2	S 3	S4	S5	C1
First Exam													
Second Exam													
Mid-term Exam			35	\checkmark									
Participation			5									\checkmark	\checkmark
Asynchronous Activities													
Quizzes													
Assignments			10									\checkmark	\checkmark
Group presentation													
Final Exam			50	\checkmark									
Total out of 100			100										

Ninth: Course Policies

- All course policies are applied to all teaching patterns (online, blended, and face-to-face Learning) as follows:
 - a. Punctuality.
 - b. Participation and interaction.
 - c. Attendance and exams.
- Academic integrity: (cheating and plagiarism are prohibited).

