Zarqa University Faculty Science Department: Physics Course title: General Physics 101Course ID: 0300121

First Semester 2019/2020

Course description:

Measurement and Dimensions, Motion in a straight line, Vectors, Motion in the plane, Newton's Laws, friction, Work, Power, Energy (conservation, conservation and conservative and non-conservative energy) and Rotational Motion.

Learning Outcomes

- 1. Knowledge of the fundamental concepts for mechanics
- 2. Understanding of physical measurements and dimensions, motion and Newton's Lows
- 3. Understanding of origins of work and energy

Aims of the course:

- 1. To understand different physicals quantities and their units (time, length and mass)
- 2. To understand the physics of motion (ID and 2D), and Newton's law
- 3. To understand the rotational motion and its applications
- 4. To understand the force, energy, power and their relationships.
- 5. To understand energy conservations and its applications.

Intended Learning Outcomes: (ILOs)

A. Knowledge and Understanding

A1. Concepts and Theories:

Concepts of measurements of physical quantities, Kinetic Equations, concepts of motion in one and 2 dimensions, Newton's Laws of motion, and theory of energy conservation.

A2. Contemporary Trends, Problems and Research:

Recognize the methodology of solving problems by using Newton's Laws and kinetic equations.

A3. Professional Responsibility:

Measure, track and understand the motion and energy of different physical systems.

B. Subject-specific skills

B1. Problem solving skills:

- Applying kinetic equations, Newton's Laws and energy conservation theory to solve different problems related to the motion in different dimensions and energy conservation for different systems..

B2. Modeling and Design:

- Applying Newton's Laws and energy theories model and design infrastructure facilities, tools, mechanical parts in the machine.

B3. Application of Methods and Tools:

-Integrate the concepts and principles of mechanics (Newton's Laws, energy theories) for applications.

C. Critical-Thinking Skills

C1.Analytic skills:

- Relate the theoretical information to practical work to increase the understandings of the basic knowledge

تاريخ الإصدار: 24حزيران 2015 الإصدار: 01 ZU/QP10F004 تاريخ الإصدار

C2.Strategic Thinking:

- Applying Newton's Laws and energy theories to solve different engineering problems

C3.Creative thinking and innovation:

- Practice kinetic and energy theories in real world applications; such as Infrastructure and Automotive industry.

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. Communication:

-Apply different physical principles in different disciplines of science and industry.

- Enhance the observation of individual to the natural phenomena.
- Assist the student to participate in life science studies

D2.Teamwork and Leadership:

- Increase the cooperative behavior between the different research groups of different applications.
- To work in stressful environment and within constraints.
- To communicate effectively.
- Use the efficient IT capabilities.
- Management the tasks efficiently.
- To acquire entrepreneurial skills.
- Refer to relevant literature effectively.
- Searching for the information and going to self-learning a new topic

Course structures:

Week	Credit Hours	ILOs	Topics	Teaching Procedure	Assessment methods
1	3	A1,B3	Physics and Measurements	Lecture, Oral inquiry	Class participation Solving assigned problems: 9-12, 17, 35, 16 and 49
2-3	3	A2,B3,C1	Motion in 1D	Lecturing discussion	Solving assigned problems: 1-7, 15, 19, 24-26
4-5	3	A1,C2,C3	Motion in 1D , Vectors	Lecture, Class discussion	Chapter 2: Solving problems; 16-17, 33, 35, 43, 58 and 62. Chapter 3: Short- answer questions
6-7	3	A3,B1,B3,C 2, D1	Vectors, Motion in 2D	Lecture- demonstration Problem solving or case studies	Chapter 3: Solving problems; 1-6, 11, 25 and assigned homework;31-37 Chapter 4: Short- answer questions on vectors
8-9	3	A1,C2,B3,D1, D2	Motions in 2D, Laws of motion	Lecturing discussion	Chapter 4: Solving problems; 6-7, 9, 21, 25, 29, 33 and 36assigned home work;40, 70, 84, and 86. Chapter 5: Short- answer questionson

تاريخ الإصدار: 24حزيران 2015 الإصدار: 01 ZU/QP10F004 الإصدار: 01

					Laws of Motion
10-11	3		Laws of motion, Circular motion	Lecturing	Chapter 5: Solving problems; 1-
				discussion	3, 15, 19, 22, 28, 36-37, 42, 45,
					46, 49, 64. Assigned home work;
					65, 70, 88, 85, 89, 93.
					Chapter 6: Solving problems;1-
					10, 51-5258 and 60
12-14	3	A1,C2,B3,D1,	Energy Systems	Lecturing	Chapter 7: Solving problems; 5-
		D2		discussion	10, 14, 17, 25, 31.Assigned
					homework; 47, 49, 52, 60 and
					66
					Chapter 7: Short-answer
					questions on Energy

References:

A. Main Textbook:

"Physics for Scientist and Engineers" Serway Jewett, 9th Edition

B. Supplementary Textbook(s): TD (to be demined)

"Physics for Scientists and Engineers", Serway Jewett, 6th Edition

Assessment Methods:

Methods	Grade	Date
1 st	25	TD
2nd	25	TD
Final	50	TD

