Faculty: Information Technolo	ogy	
Department: Data Science and Artificial Intelligence	Program: Bachelor	
Academic year:	Semester: 2	The UNIVERSIT

Course Plan

First: Course Information

Course No.: 1505461	Course Title: Comp Vision	Credit Hou	rs: 3	Theoretical: 3	Practical:		
Prerequisite No. and Title: 1505366- Digital Image Processing		Section No.:		Lecture Time:			
Level in JNQF	7						
Type Of Course:	 Obligatory Univer Obligatory Facult Obligatory Specia Ancillary course 	y Require	ement	🗆 Elec	ctive University Re ctive Faculty Requi tive Specialization	irement	
Type of Learning:	 Face-to-Face Learning Blended Learning (2 Face-to-Face + 1 Asynchronous) Online Learning (2 Synchronous+ 1 Asynchronous) 						

Second: Instructor's Information

Course Coordinator:									
Name:		Academic Rank:	Academic Rank:						
Office Number:		Extension Number:	Extension Number: Email:						
Course Instructor	:								
Name:		Academic Rank:	Academic Rank:						
Office Number:		Extension Number:	Email:						
Office Hours:	Sunday Mo	onday Tuesday	Wednesday	Thursday					

Third: Course Description

This course explores the fundamentals of computer vision with a focus on image classification, object localization, object detection, and image segmentation. Gain insights into advanced concepts such as multi-label classification, and distinguish between semantic segmentation and instance segmentation. This course emphasizes hands-on experience by utilizing TensorFlow to build robust object detection and image segmentation models. Learn to implement popular models, including regional-CNN and ResNet-50, and leverage pre-trained models available on TensorFlow Hub. Gain practical skills in configuring models for training, and explore the power of transfer learning to detect and localize objects effectively.

Fourth: Course Objectives

- 1. Gain a comprehensive understanding of the foundational principles behind digital images, including image formation, light interactions, sensor technologies, and computational image representation. Develop proficiency in essential manipulation techniques such as filtering, edge detection, and segmentation.
- 2. Acquire the skills to extract meaningful features, such as shapes, textures, and edges, from images. Learn the art of matching these features across images to identify similarities and differences, enhancing your ability to analyze and interpret visual data.
- 3. Train as an "object whisperer" by constructing and training machine learning models for object recognition and classification. Dive into advanced algorithms like convolutional neural networks (CNNs) to achieve robust object detection in real-world scenarios.
- 4. Move beyond individual objects and delve into the intricacies of scene analysis. Explore computer vision techniques for tasks like scene reconstruction, motion tracking, and anomaly detection, fostering a holistic understanding of visual data within complex environments.
- 5. Explore the broad spectrum of applications for computer vision in diverse fields, including medical imaging, robotics, and autonomous systems. Engage in discussions about the ethical considerations surrounding this powerful technology and actively promote responsible development and utilization. Gain the skills to bridge theoretical knowledge with practical applications in real-world scenarios.

Fifth: Learning Outcomes

Level descriptor according to (JNQF)	CILOs Code	CILOs If any CLO will not be assessed in the course, mark NA.	Associated PILOs Code Choose one PILO for each CILO*	Assessment method Choose at least two methods
	K1	Identify the basic terms associated with computer vision, including object localization, object detection, and image segmentation.	PK1	 Mid-term Exam Final Exam
Knowledge	K2	Apply the pre-trained models and Media Pipe techniques to solve modern problems.	PK2	 Mid-term Exam Final Exam
	К3	Define principles, concepts, and computer vision architecture of practical problems.	PK4	 Quizzes Mid-term Exam Final Exam
	S1	Analyze and evaluate the design and implementation of computer vision methods.	PS2	 Mid-term Exam Final Exam
	S2	Design various computer vision architecture as R-CNN, Fast R-CNN, Faster R-CNN.	PS3	 Mid-term Exam Final Exam
Skills	S3 Select and apply appropriate methods and computational solve problems using pre-tra models.		PS2	 Mid-term Exam Final Exam
	S4Design and construct computer vision systems using appropriate methods.		PS3	 Quizzes Mid-term Exam Final Exam
	85	Be able to communicate effectively in a group.	PS4	 Quizzes Mid-term Exam Final Exam
Competencies	C1	Solve the problems by using new architecture.	PC1	• Participation

*CILOs: Course Intended Learning Outcomes; PILOs: Program Intended Learning Outcomes; For each CILO, the PILO could be the same or different.

Sixth: Learning Resources

Designated Book:	Python Deep Learning								
Print		Year: 2019	Print	Year: 2019					
Additional Sources: Website:	ApplicationMohamed	 Richard Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition, Springer, 2021. Mohamed Elgendy, Deep Learning for Vision Systems, Manning,2020 							
Teaching Type:	Classroom	Laboratory	U Workshop	MS Teams Moodle					

Seventh: Course Structure

Week	Course Intended Teaching Outcomes (CILOs)	Topics	Teaching Procedures*	Teaching Methods**	References***	
Week 1	K1, K2, K3, S1	Introduction OpenCV: Drawing	Face-to-Face	Lecture, In class Questions	Chapter 1	
	K1, K2, K3, S1	Real-time face	Asynchronous	Asynchronous		
Week 2	K1, K2, K3, S1, S1 S2	OpenCV: Contour Edge Detection	Face-to-Face	Lecture, In class Questions	Chanton 1	
Week 2	K1, K2, K3, S1, S1 S2	Object Detection: A journey from R-CNN to Mask R-CNN and YOLO	Asynchronous	Asynchronous	Chapter 1	
Week 3	K1, K2, K3, S3 S5	OpenCV: Sketching and Threholding Face and Eyes Detection	Face-to-Face	Lecture, In class Questions	Chapter 2	
	K1, K2, K3, S3 S5	Animate 3D Characters Using WebCams and MediaPipe	Asynchronous	Asynchronous		
Wook 4	K1, K2, K3, S3 S5	OpenCV: Face and Eyes Detection Operations	Face-to-Face	Lecture, In class Questions	Chapter 2	
Week 4	K1, K2, K3, S3 S5	Analyze a Soccer game using Tensorflow Object Detection and OpenCV	Asynchronous	Asynchronous	Chapter 2	
Week 5	K1, K2, K3, S3 S5	MediaPipe Face Detection	Face-to-Face	Lecture, In class Questions	Chapter 2	
week 5	K1, K2, K3, S3 S5	Sign Language Detection	Asynchronous	Asynchronous	Chapter 2	

Issue Date: 20/10/2023

Week 6	K1, K2, K3, S1 S2	MediaPipe Face Mesh	Face-to-Face	Lecture, In class Questions	Chapter 3	
WEEK 0	K1, K2, K3, S1 S2	MediaPipe Hands	Asynchronous	Asynchronous	Chapter 5	
Week 7	K1, K2, K3, S1 S2	MediaPipe Hands	Face-to-Face	Lecture, In class Questions	Chapter 3	
	K1, K2, K3, S1 S2	MediaPipe Holisti	Asynchronous	Asynchronous		
Week 8	K1, K2, K3, S1 S2	How to Code a Machine Learning Lip Reading App	Face-to-Face	Lecture, In class Questions	Chapter 3	
	K1, K2, K3, S1 S2	Vision Transformer with TensorFlow	Asynchronous	Asynchronous	-	
		Midterr	n Exams			
Weels 0	K1, K2, K3, S3 S5	MediaPipe Holistic MediaPipe Pose	Face-to-Face	Lecture, In class Questions	Chapter 4	
Week 9	K1, K2, K3, S3 S5	Transformer in Vision Domain	Asynchronous	Asynchronous	Chapter 4	
	K1, K2, K3, S3 S5	Generative Methods	Face-to-Face	Lecture, In class Questions		
Week 10	K1, K2, K3, S3 S5	Understanding Semantic Segmentation with UNET	Asynchronous	Asynchronous	Chapter 4	
K1, K2, K3, S3 S5		Generative Methods	Face-to-Face	Lecture, In class Questions	Chapter 4	
K1, K2, K3, S3 S5		Semantic Segmentation U-Net	Asynchronous	Asynchronous	-	
Wool- 13	K1, K2, K3, S3 S5	Stable Diffusion	Face-to-Face	Lecture, In class Questions	Chapter 5	
Week 12	K1, K2, K3, S3 S5	Medical Image Segmentation	Asynchronous	Asynchronous	-	
Wool- 12	K1, K2, K3, S3 S5	Stable Diffusion	Face-to-Face	Lecture, In class Questions	Chapter 5	
Week 13	K1, K2, K3, S3 S5	Semantic segmentation with U-Net	Asynchronous	Asynchronous	Chapter 5	
Week 14	\$3, C1	Revision / students presentations	Face-to-Face	Discussion activity		
S3, C1		Revision / students presentations	Asynchronous	Online discussion activity		
		Final	Exams			

*Teaching procedures: (Face-to-Face, synchronous, asynchronous). *** Reference: (Pages of the book, recorded lecture, video....) ** Teaching methods: (Lecture, video....).

Eighth: Assessment Methods

Methods	Online Blended Learning Learning		Face-To- Face	Specific Course Output to be assessed **If any CILO will not be assessed in the course, mark NA.								
			Learning	К1	К2	К3	S1	S2	S 3	S4	S5	C1
First Exam												
Second Exam												
Mid-term Exam		35		\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Participation		5										\checkmark
Asynchronous Activities												
Quizzes												
Assignments		10				\checkmark				\checkmark	\checkmark	\checkmark
Group presentation												
Final Exam		50		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Total out of 100		100										

Ninth: Course Policies

- All course policies are applied to all teaching patterns (online, blended, and face-to-face Learning) as follows:
 - a. Punctuality.
 - b. Participation and interaction.
 - c. Attendance and exams.
- Academic integrity: (cheating and plagiarism are prohibited).

