Department: Mathematics

Program: Bachelor's

Course Plan

First: Course Information

<i>Course No.</i> 0301361	Course Title: General Topology 1	Credit Hours: 3
Prerequisite: Logic & Set Theory	Section No.: 1	<i>Lecture Time:</i> 9:00-10:00
Type Of Course:	 Obligatory Faculty Requirement Obligatory University Requirement Faculty Course Elective Specialty Requirement 	ctive University Requirement ulty Requirement gatory Specialization requirement
Type of Learning:	 Face-to-Face Learning Blended Learning (2 Face-to-Face + 1Asynchic) Online Learning (2 Synchronous+1 Asynchronous) 	ronous) onous)

Third: Course Description

Topological spaces, open and closed sets, boundary, interior and accumulation points, subspace topology, basis and sub-basis, finite product of topological spaces, continuous functions, open and closed functions, homeomorphisms, Separation and countability axioms, compact spaces, metric spaces.

issue:03

Fourth: Course Objectives

General Topology is one of the major branches of modern mathematics; this one-semester three-credit course will have three general interconnected objectives.

- 1. Will provide a firm foundation in topology to enable the student to continue more advanced study in this area.
- 2. This course will present and emphasize many topics in mathematics, in particular Real analysis, in order to aid the student in his future mathematical studies.
- 3. This course hopes to expose the students to both mathematical rigor and abstraction, giving there an opportunity further to develop his mathematical maturity.

Fifth: Learning Source

Main Reference:	An introduction to general Topology								
Author: Paul Long	1 LongIssue No.: 4th EditionPublication Year: 1982								
Additional Sources and Websites:	General Topology by: STEPHEN WILLARD								
Teaching Type:	Classroom	Laboratory 🗆 Workshop	⊐ MS Teams □ Moodle						

Sixth: Learning Outcomes

Level descriptor according to (JNQF)	CILOs Code	CILOs	Associated PILOs Code Choose one PILO for each CILO*	Assessment method** Choose at least two methods	Scores out of 100 State the total score identified for each CILO	Minimum acceptable Score/percentage (%) The percentage should not be less than 50% ***
Knowledge	K1	Define and illustrate the concept of topological spaces and continuous functions.	PK2	First Exam, Second Exam, Final Exam, Assignment	10	5 (50%)
	K2	Define and illustrate the concept of product topology and quotient topology.	PK2	First Exam, Second Exam, Final Exam, Assignment	10	5 (50%)
	K3	Define and illustrate the concepts of the separation axioms.	РК3	First Exam, Second Exam, Final Exam, Assignment	8	4 (50%)
	K4	Define connectedness and compactness.	PK4	First Exam, Second Exam, Final Exam,	8	4 (50%)

Issue Date:20/10/2023

				Assignment		
Skills	S1	Describe different examples about topological spaces.	PS2	First Exam, Second Exam, Final Exam, Assignment	12	6 (50%)
	S2	Illustrate the applications of learned theories.	PS1	First Exam, Second Exam, Final Exam, Assignment	10	5 (50%)
	S3	Explaining the theories.	PS2	First Exam, Second Exam, Final Exam, Assignment	10	5 (50%)
	S4	Apply the theories in solving problems.	PS3	First Exam, Second Exam, Final Exam, Assignment	8	4 (50%)
	S5	Classify topological spaces and its properties using separation axioms and connectedness.	PS2	First Exam, Second Exam, Final Exam, Assignment	8	4 (50%)
Competencies	C1	Working in a team to handle some advanced topics in number theory	PC3	First Exam, Second Exam, Final Exam, Assignment	4	2 (50%)
	C2	C2 Develop the personal skills and capacity to carry responsibility		First Exam, Second Exam, Final Exam, Assignment	12	6 (50%)

*Refer to document () and page 2 in document () ** Refer to document ()

**80% of the students must achieve the minimum acceptable percentage or higher for each CILO

Seventh: Course Structure

Lecture Date	Intended Teaching Outcomes (ILOs)	Topics	Teaching Procedures*	Teaching Methods***	References***
		Introduce to the course			
	K1, K2, S1, S2	Defining a Topology.	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
	K1, K2, S1, S2, C1	Examples on a topological space	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
	K1, K2, S1, S2, C1	Closed sets	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference

Issue Date:20/10/2023

K1, K2, S1, S2, C1, C2	A Closer Look at the Standard Topology on R	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1, K2, K3, S1, S2, C1, C2	Topologies Induced by Functions	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1, K2, K4, S1, S2, C1, C2	The Interior	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1, K2, K4, S1, S2, C1, C2	The Exterior	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1, K2, K3, S1, S2, S3, C1	Boundary of a Set	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1, K2, K5, S1, S2, S4, C1, C2	Cluster Points, Isolated points	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1, K2, K3, S1, S2, S5, C1, C2	Base	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1, K2, K3, S1, S2, S3, C1, C2, C3	Finite Product of Topological Spaces	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
		First Exam		
K1, K2, K3, S1, S2, S3, C1, C2	Subbases	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1, K2, K3, S1, S2, S3, C1, C2	General Products	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1, K2, K3, S1, S2	Continuous function	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, S1, S2	Open functions	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, S1, S2, S3, C1, C2	Homeomorphisms	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, K4, S1, S2, S3, C1, C2	The identification Topology	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, K4, S1, S2, S3, C1, C2	Quotient spaces	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, K4, S1, S2, S3, C1, C2	The Separation of Axioms	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, K4, S1, S2, S3, C1, C2	Examples on the Separation of Axioms	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, K4, S1, S2, S3, C1, C2	Hausdorff Spaces	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, S1, S2, S3, C1, C2	Regular Spaces	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, S1, S2, S3, C1, C2	Normal Spaces	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, S1, S2, S3, S4, S5, C1, C2	The first Axiom of Countability	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, S1, S2, S3, S4, S5, C1, C2	The second Axiom of Countability	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, K4, S1, S2, S3, C1, C2	Connected Spaces	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, S1, S2, S3, S5, C1, C2	More Properties of Connected Spaces	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference
K1,K2, K3, K4, S1, S2, S3, C1, C2	Components	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference

Issue Date:20/10/2023

Second Exam								
K1,K2, K3, S1, S2, S3, C1, C2	Locally Connected Spaces	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference				
K1,K2, K3, S1, S2, S3, S4, S5, C1, C2	Compact Spaces	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference				
K1,K2, K3, S1, S2, S3, S5, C1, C2	More Properties of Compact Spaces	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference				
K1,K2, K3, S1, S2, S3, S5, C1, C2	Compactness in R ⁿ	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference				
K1,K2, K3, S1, S2, S3, S5, C1, C2	Non-Continuous functions	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference				
K1,K2, K3, S1, S2, S3, S5, C1, C2	Defining a matric	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference				
K1,K2, K3, S1, S2, S3, S5, C1, C2	Metric topologies	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference				
K1,K2, K3, S1, S2, S3, S5, C1, C2	Equivalent Metric topologies	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference				
K1,K2, K3, S1, S2, S3, S5, C1, C2	Continuity of functions between Metric spaces	Face-to-Face	Lectures, cooperative learning and discussion	Mean Reference				
K1,K2, K3, S1, S2, S3, S5, C1, C2	Examples of Continuous functions	Face-to-Face	Lectures, cooperative learning and discussion					
 K1, K2, K3, S1, S2, S3, S5, C1	Revision	Face-to-Face	Lectures, cooperative learning and discussion					
Final Exam								

* Learning procedures: (Face-to-Face, synchronous, asynchronous). * * Teaching methods: (Lecture, video....). ** * Reference: (Pages of the book, recorded lecture, video....).

Eighth: Assessment methods

Methods	Direct Teaching		Specific Course Output to be measured *State the score identified for each CILO for each method of assessment out of 100 **If any CILO will not be assessed in the course, mark NA.									
		К1	К2	КЗ	К4	S1	S2	S 3	S4	S5	C1	C2
First Exam	20	8				4	5	3				
Second Exam	20			3	4	2	2	2	2	3		2
Final Exam	50	2	10	5	4	4	3	5	4	5		8
Assignment	10					2			2		4	2
Total	100	10	10	8	8	12	10	10	8	8	4	12

Ninth: Course Policies

- All course policies are applied on all teaching patterns (online, blended, and face-to-face Learning) as follows:
 - a. Punctuality.
 - b. Participation and interaction.
 - c. Attendance and exams.
- Academic integrity: (cheating and plagiarism are prohibited).

