Department: Mathematics

Course Plan

First: Course Information

Course Name:		Probability Theory			Course No. 0301334		
Credit Hours:		3 hrs	Theoretical	3	Practical	0	
Prerequisite: Calculus 3, Statistics and Probability		030133 4	Class Number: 1		Lecture Time:		
Level in JNQ	F	7					
Course Nature:	 Mandatory Faculty Requirement Mandatory University Requirement Optional Specialty Requirement 			□Optional nt □Ancillar ☑Mandate	University Requi ry Course ory Specialization	rement requirement	
Type of Education:	 Fully Direct (Fully Face-to-Face Education) Integrated Education (2 Face-to-Face + 1 Asynchronous) Electronic Education Fully (1 Asynchronous + 2 Synchronous) 						

Third: Short Description of the Course

Axioms of probability, conditional probability, distributions of random variables; mathematical expectation, moment generating function; some special types of distributions (discrete and continuous); joint distributions; covariance and independence, correlation, conditional distributions; conditional expectation; functions of random variables (distribution function method, moment generating function method, and the Jacobian transformation method); limiting distributions.

Fourth: Course objectives

The aim of this course is to explain the fundamental concepts in the probability theory including the

theoretical background and the random variables with their applications in several well-known distributions.

The joint distributions are discussed in this course with the relative terms used along with conditional

Fifth: Learning Outcomes

Level descriptor according to (JNQF)	CILOs Code	CILOs If any CILO will not be assessed in the course, mark NA.	Associated PILOs Code Choose one PILO for each CILO*	Assessment method** Choose at least two methods	Scores out of 100 State the total score identified for each CILO	Minimum acceptable Score/percentage (%) The percentage should not be less than 50% ***
K1 Knowledge		Understand the main ideas of probability set function and conditional probability, random variable and its probability distribution and characterize the distribution by its probability density function and the distribution function.	P. K1	First Exam Second Exam Final exam Assignment	30	15 (50%)
	К2	Understand the definitions and the properties of some special discrete and continuous distributions.	P. K1	First Exam Second Exam Final exam	30	15 (50%)
Skills S2	S 1	Prove some important properties of probability set functions, and the main properties of the basic random variables.	P. S1	First Exam Final exam	15	7.5 (50%)
	S2	Derive a joint distribution and its properties.	P. S2	Assignment Final Exam	15	7.5 (50%)
Competencies	C1	Construct the probability model for random experiments.	P. C4	Assignment First exam	4	2 (50%)
	C2	Use the properties of distributions to find moments and probability distribution of functions of random variables.	P. C4	Second exam Final exam	6	3 (50%)

*Refer to document (CC-2023-02) and page 2 in document (CC-2023-01) ** Refer to document (CC-2023-05)

****80% of the students** must achieve the minimum acceptable percentage or higher for each CILO

Sixth: Learning Source

Designated Book:	Mathematical Statistics with Applications	
Authors: Mendenhall , William,Scheaffer , Fichard L.,Wackerly , Dennis D	<i>Print:</i> 7 th edition	Year: 2008
Additional Sources: Website:	Introduction to Probability and Mathematical Sta Engelhardt, Second edition, Duxbury, 1992.	atistics, Lee J. Bain and Max
Teaching Type:	Classroom 🗆 Laboratory 🗆 Workshop	☐ MS Teams

Seventh: Course Structure

Cov CII	vered LOs	Topics	Teaching Procedures*	Teaching Methods**	References***
	K1 , S1	Preliminary			20-85
		concepts in	Face-to-face	Lecture	
		probability			
	K1 , S1	Preliminary	Face-to-face		20-85
		concepts in		Lecture	
		probability			
	K1 , S1	Probability set	Face-to-face	Lecture	20-85
		functions			
	K1 , S1	Some properties	Face-to-face	Lecture	20-85
		of probability			
	K1 , S1	Conditional	Face-to-face	Lecture	20-85
		probability and			
		Bayes rule			
	K1 , S1	Counting	Face-to-face	Lecture	20-85
		techniques			
	K1 , S1	Discrete Random	Face-to-face	Lecture	86 156
		Variables			80-130
	K1 , S1	Discrete Random	Face-to-face	Lecture	86 156
		Variables			80-150
	K1 , S1	Continuous	Face-to-face	Lecture	
		Random			157-222
		Variables			
	K1,C1	Continuous	Face-to-face	Lecture	157-222

ZU/QP10F004

Issue Date: 20/10/2023

		Random				
		Variables				
	K2 , C1	Some properties	Face-to-face	Lecture		
		of expected			86-156	
		values				
	K2 , C1	Moment	Face-to-face	Lecture		
		generating			86-156	
		functions				
	K2 , C1	Binomial	Face-to-face	Lecture	86-156	
		distribution			00 150	
	K2 , C1	Poisson	Face-to-face	Lecture	86-156	
		distribution			00 150	
	K2 , C1	Other discrete	Face-to-face	Lecture	86-156	
		distributions			00 150	
	K2 , C1	Uniform	Face-to-face	Lecture	157-222	
		distribution			137 222	
		، الأول	الامتحان			
	K2 , C2	Normal distribution	Face-to-face	Lecture	157-222	
	K2 , C2	Gamma-type	Face-to-face	Lecture	157 222	
		distributions			137-222	
	K2, C2	Beta distribution	Face-to-face	Lecture	157-222	
	K2 , C2	Other continuous	Face-to-face	Lecture	157 222	
		distributions			137-222	
	K2, S1, C2	Gamma-type	Face-to-face	Lecture	157 222	
		distributions			137-222	
	K2, S1, C2	Joint discrete	Face-to-face	Lecture	222 205	
		distributions			223-275	
	K2, S1, C2	Joint continuous	Face-to-face	Lecture	223-205	
		distributions			223-275	
	K2, S1, C2	Independent	Face-to-face	Lecture	223-295	
		random variables				
	K2, S1, C2	Conditional	Face-to-face	Lecture	223-295	
		Distributions				
	K2, S1, C2	Conditional	Face-to-face	Lecture	223-295	
		Distributions			223 275	
	الامتحان الثاني					
	K2, S2, C2	Random samples	Face-to-face	Lecture	223-295	
	S2, C3	Properties of	Face-to-face	Lecture		
		expected			223-295	
		values				
	\$2 C3	Dropartias of	Face-to-face	Lecture		
	52, 03	roperties of	1 acc-10-1acc	Lectule	223-295	
		expected				

ZU/QP10F004

SGS

issue: 03

	values						
S2, C3	The covariance	Face-to-face	Lecture	223-295			
S2, C3	The covariance	Face-to-face	Lecture	223-295			
S2, C3	Joint moment- generating functions	Face-to-face	Lecture	223-295			
\$2, C3	Functions of random variables	Face-to-face	Lecture	296-345			
\$2, C3	The CDF technique	Face-to-face	Lecture	296-345			
K2, \$3	Transformation methods	Face-to-face	Lecture	296-345			
K2, S3	Transformation methods	Face-to-face	Lecture	296-345			
K2, S3	MGF method	Face-to-face	Lecture	296-345			
K2,, S3	MGF method	Face-to-face	Lecture	296-345			
K2, S3	MGF method	Face-to-face	Lecture	296-345			
K2, S3	Revision	Face-to-face	Lecture				
Final Exams							

Education procedures: (Direct, synchronous, asynchronous). * * Refer to document (CC-2023-04) ***Reference: Pages of the book, number of the chapter, recorded lecture, video....)

Eighth: Assessment methods

Methods	Fully Electronic Education	Fully Electronic Education	Direct Teaching	Specific Course Output to be measured					
				К1	К2	S1	S2	C1	C2
First Exam			20	8	4	6		2	
Second Exam			20	6	10				4
Final Exam			50	10	16	9	13		2
Assignments			10	6			2	2	
Total out of 100			100	30	30	15	15	4	6

* Refer to document (CC-2023-03)

SGS

Ninth: Course Policies

- Meeting the deadline for the lecture.
- Commitment to interaction and participation.
- Assignments will be given through a platform (Moodle).
- University regulations for attendance and absence from lectures and examinations are in force.
- Academic Integrity: According to university regulations and instructions, fraud or moral impersonation is unacceptable and punishable.

issue: 03