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Abstract Check point kinase 1 (Chk1) is an important

protein in G2 phase checkpoint arrest required by cancer

cells to maintain cell cycle and to prevent cell death.

Therefore, Chk1 inhibitors should have potential as anti-

cancer therapeutics. Docking-based comparative inter-

molecular contacts analysis (dbCICA) is a new three-di-

mensional quantitative structure activity relationship

method that depends on the quality and number of contact

points between docked ligands and binding pocket amino

acid residues. In this presented work we implemented a

novel combination of k-nearest neighbor/genetic function

algorithm modeling coupled with dbCICA to select critical

ligand-Chk1 contacts capable of explaining anti-Chk1

bioactivity among a long list of inhibitors. The finest set of

contacts were translated into two valid pharmacophore

hypotheses that were used as 3D search queries to screen

the National Cancer Institute’s structural database for new

Chk1 inhibitors. Three potent Chk1 inhibitors were dis-

covered with IC50 values ranging from 2.4 to 69.7 lM.

Keywords Check point kinase 1 � k nearest neighbor �
dbCICA � Pharmacophore � In silico mining

Introduction

Check point kinase 1 (Chk1) is a serine-threonine kinase that

has important role repairing DNA damage. Cell cycle

checkpoints temporarily stop the progression of cell cycle to

allow time for the repair of the DNA damage in order to

maintain the genomic integrity and the survival of cells [1, 2].

Apparently, from therapeutic point of view, Chk1-me-

diated S or G2 checkpoint arrests and subsequent DNA

repair in tumor cells limit the efficacy of radiation therapy

and cytotoxic drugs leading to drug resistance. It has been

suggested that Chk1 inhibition would preferentially sensi-

tize tumors to DNA damaging agents [3, 4].

Normal cells depend on arrest at G1 phase for repairing

DNA damage; while tumor cells (particularly p53-mutated)

perform their DNA repairs during cell cycle arrest via S and

G2 checkpoints due to their incapability of G1 arrest. As a

result, specific inhibition of S and G2 arrests through inhi-

bition of Chk1 is expected to selectively drive p53-deficient

tumor cells to enter mitotic catastrophe, and eventually

apoptosis following DNA damage [5, 6]. This assumption

has been recently confirmed by the reported increase in ef-

fectiveness of DNA-damaging agents when given to p53-

mutated tumor cells after knocking down their Chk1 using

small interfering RNA (siRNA) or Chk1 antisense technique

[7–9], or even if inhibited by a natural product such as

7-hydroxystaurosporine [10], which proves Chk1 to be a

target for selective chemosensitization.

Docking-based comparative intermolecular contacts

analysis (dbCICA) is a novel 3D QSAR analysis method-

ology developed by us to validate docking settings and to

extract valid structure-based pharmacophores [11–13]. In

this approach the interest is directed on recognizing a group

of atoms in the active site that selectively contact with active

ligands while evade inactive ones. If such a set of binding
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site contact atoms is identified for a group of docked li-

gands, then it can be safely assumed that the corresponding

docking settings are successful, i.e., it managed to arrange

the molecules in the binding site in a way that justifies the

variation in their bioactivities [11–13]. Furthermore, critical

contact points identified by dbCICA modeling can be

transformed into pharmacophore model(s) that can be used

for in silico mining for novel hits [11–13].

kNN based quantitative structure activity relationship

(QSAR) methodology relies on a distance learning

methodology for calculating and predicting ligands bioac-

tivity; that is the activity value of an unknown ligand

structure can be predicted from the activity values of a

certain number (k) of nearest neighbors to that ligand

(kNNs) in the training set. The neighborhood is defined

depending on certain selected descriptors (in this case li-

gand-receptor contact points) while the nearness is mea-

sured by an appropriate distance metric (e.g., molecular

similarity measure) [14–16].

The greatest advantage of kNN-based QSAR modeling

is its ability to non-linearly correlate bioactivity with var-

ious molecular descriptors [14–16], which makes it handy

in cases of complicated structure–activity relationships.

From our experience in dbCICA modeling [11–13], we

noticed that in some cases the relationship between ligand-

receptor contacts and corresponding ligands’ bioactivities can

be rather complex and hard to model using conventional

linear regressionmethods,which can lead to false conclusions

about the optimal docking conditions for a particular list of

inhibitors. This trend prompted us to attempt using kNN

methodology as correlation platform in dbCICA modeling.

We coupled kNN with genetic function algorithm (GFA)

to find the finest combination of ligand-receptor contacts that

can explain bioactivity variations among training com-

pounds. We decided to test the new methodology (kNN-

dbCICA) to search for new Chk1 inhibitors. Our decision

was driven by interesting anti-cancer properties of Chk1

inhibitors and the availability of proper crystallographic

structures for this protein. However, we were inclined to

perform the study on a single crystallographic example to

avoid unnecessarily extending the study (Fig. 1).

Experimental

Molecular modeling

Software and hardware

The molecular modeling software packages used in the

current research were installed on standard personal

computers:

• CS ChemDraw Ultra (Version 7.0.3), Cambridge Soft

Corp., USA.

• MarvinView (Version 5.1.4), ChemAxon Ltd., Bu-

dapest, Hungary.

• Ligandfit implemented in Discovery Studio 2.5.5

(DS2.5.5), Accelrys Inc., San Diego.

• MATLAB (Version R2007a), The MathWorks Inc.,

USA.

• Cat.Search implemented in Discovery Studio (version

2.5.5), Accelrys Inc., USA.

Data set

The structures of 192 Chk1 inhibitors were collected from

published literature [17–20]. The ligands were carefully

gathered in such away to make sure that their anti-Chk1

activities were determined via identical bioassay procedure,

which should permit appropriate QSAR correlation. The

bioactivities of the collected inhibitors were expressed as

IC50 values (Table A under the Supplementary Material).

Preparation of ligands

The 2D structures of the Chk1 ligands (1–192, Table A

under the Supplementary Material) were sketched in

ChemDraw Ultra (Version 7.0.3). We used MarvinView to

guide us in identifying ionized and un-ionized states for

ionizable inhibitors. Subsequently the structures were

translated into sound 3D representations by using rule-

based methods implemented in Discovery Studio and were

saved in SD format for subsequent docking experiments.

The Log(IC50) (nM) values were applied in dbCICA ana-

lysis, hence linearly correlating the biological data to the

free energy change.

Preparation of Chk1 crystal structure

The 3D structure of Chk1 was taken from the Protein Data

Bank (PDB code: 3TKI, resolution: 1.6 Å). We selected

this particular protein structure based on two important

issues: (1) its superior resolution (1.6 Å), and (2) the fact

that the co-crystallized ligand in this protein has the highest

affinity (IC50 = 0.05 nM) among all high-resolution

(\2.0 Å) Chk1 crystallographic complexes.

Hydrogen atoms and Consistent Force Field charges

were added to the protein atoms as implemented within

Discovery Studio. Docking experiments were repeated on

hydrous and anhydrous versions of the binding pocket

(ATP binding site).
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LigandFit docking

LigandFit docking engine considers the flexibility of the

ligand while treats the receptor as rigid [21]. The steps that

were implemented in the LigandFit docking process and

corresponding docking settings are described in Section

SM-1 in the Supplementary Material. High ranking docked

conformers/poses were scored using 7 scoring functions,

Fig. 1 General computational

workflow implemented herein

for discovering new Chk1

inhibitors by kNN-dbCICA

methodology. GFA genetic

function approximation, kNN k

nearest neighbour, ROC

receiver operating characteristic

curve analysis
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namely: Jain, LigScore1, LigScore2, PLP1, PLP2, PMF

and PMF04 [21]. Accordingly, we performed a total of 28

docking experiments corresponding to two ligand ioniza-

tion state, two protein hydration states and seven scoring

functions.

kNN-implemented docking-based comparative inter-

molecular contacts analysis (kNN-dbCICA)

This approach is described by the following sequential

points and summarized in Fig. 1:

(i) Assigning contacts-based binary code The docked

poses/conformers of each inhibitor (based on a

certain docking configuration) are assessed to

determine their nearby atoms within the ATP-

binding site. Atomic neighbors that lie closer than

(or equal to) definite predefined distance threshold

are allocated an intermolecular contact value of

‘‘one’’, otherwise they are given a contact value of

‘‘zero’’. For example, if the distance between atom

A in the docked ligand and atom B in the binding

pocket was less than or equals the predefined

threshold, then this contact (B) will be given value

of 1. Distance evaluations were automatically

performed employing the Intermolecular Monitor

of DS 2.5.5 at two distance thresholds: 3.5 and

2.5 Å.

Ultimately, this step generates a 2D matrix for

each docking-scoring configuration. Each matrix

is composed of row labels corresponding to

docked ligands and column labels corresponding

to different binding site atoms. The matrix is filled

with binary code, whereby ‘‘zeros’’ correspond to

inter-atomic distances that exceed the predeter-

mined threshold and ‘‘ones’’ for distances below

(or equal) the predefined threshold cutoffs.

As a result, two binary matrices (corresponding to

each distance threshold) were constructed for each

docking configuration (i.e., ligand ionization state,

and binding site hydration state and scoring

function). Accordingly, a total of 56 binary files

were generated in the study, i.e., corresponding to

2 ligand ionization states 9 2 protein hydration

states x 7 scoring functions 9 2 distance thresh-

olds. This complication forced us to perform the

study on a single crystallographic example to

avoid unnecessarily extending the study.

(ii) Removing sparse contacts The resulting binary

matrices were inspected for sparse contacts, such

that any binding site atom having B2 contacts

with docked ligands was omitted from the respec-

tive binary matrix to minimize statistical noise in

subsequent analyses. For example, in one case

(docking ionized ligands into the hydrous binding

site using LigScore2 scoring function and collect-

ing binding site contacts at 3.5 Å distance thresh-

old), the total number of contacts were 254, out of

which 63 were sparse contacts.

(iii) GFA-kNN-based contacts selection The resulting

binary matrices were then presented as input files

to GFA-based search for best contacts (columns)

capable of explaining bioactivity variation via k

nearest neighbor correlation methodology: GFA

relies on the evolutionary operations of ‘‘crossover

and mutation’’ to choose combination of contacts

(columns) and then test their ability to explain

bioactivity variation across the training com-

pounds using k nearest neighbors analysis.

(A) We used the GFA toolbox within MATLAB

(Version R2007a) for chromosome creation,

mutation function, cross-over function and

fitness function.

GFA operates in a cycle of four phases: (1)

encoding mechanism; (2) defining a suitable

fitness function; (3) creating a population of

chromosomes (vectors); (4) genetic ma-

nipulation of chromosomes [22]. We em-

ployed a gene-based encoding system

where the created models (chromosomes)

differ from each other by the set of inde-

pendent variables (intermolecular contacts)

that comprise each model. If the general

number of independent variables (contacts)

is equal to P (in this particular case, P

corresponds to contacts columns in a binary

matrix), the chromosome corresponding to

any model consists of a string of P binary

digits (bits) called ‘‘genes’’. Each value in

the string represents an independent vari-

able (intermolecular contact, 0 = absent,

1 = present). Each chromosome is associ-

ated with a fitness value that reflects how

good it is compared with other chromo-

somes. The following are important control

parameters in GFA to select the finest

descriptors:

• Creating an initial population In our

study we implemented an initial popula-

tion size of 120 chromosomes.

• Mating population Mating is a process

during which two parent chromosomes

are joined to generate new solutions

(offspring). The probability of mating

can take values in the range between 0
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and 100 %. In our study we set the

mating probability to be 80 % of

population chromosomes.

• Mutation operator A mutation operator

changes one or more bits (or genes) in

the chromosome to its complement

according to a given probability. In our

study we implemented Gaussian-based

random mutation.

• Maximum number of generations This is

needed to exit from a basic cycle and

complete the algorithm [22]. In our

study we specified a maximum number

of genetic iterations (generations) of

1500.

• GFA can be controlled to yield best

kNN-dbCICA models resulting from

any specified number of ligands’-recep-

tor intermolecular contacts. In this study

we employed GFA to search for the best

kNN-dbCICA models resulting from 5

contacts and repeat the process to reach

for the best models for 6, 7, 8, 9, 10, 11,

12, 13, 14 and 15 contacts. GFA was

employed to search for the best possible

combination of contacts capable of

explaining variation in biological ac-

tivities among the training compounds.

(B) kNN-based Correlation method relies on a

distance learning approach such that the

activity value of an unknown ligand is

predicted from the activity values of certain

number (k) of its nearest neighbors (kNNs)

in the training set. The similarity is mea-

sured using a distance metric that measures

the distance of the unknown compound to

its nearest neighbors with regards to the

GFA-selected contacts within the binding

site. In the current study the Euclidean

distance is considered. The standard kNN

method is implemented as the following

workflow: (1) calculate distances between

an unknown object (e.g., x) and all the

objects in the training list (2) select k

objects from the training set closest to

object x, with respect to their calculated

distances from each other; (3) use weighted

average to calculate the activity value of

object x referring to its kNNs. The best k

value was found experimentally to lie

between 1 and 5 [14, 15]. However, in our

kNN approach we scanned k values ranging

from 3 to 10. (4) The fitness function

employed herein is rL20 %O
2 . In this method

20 % of the observations are removed of the

training set, and their activities are predict-

ed using weighted average of k closest

neighbors. The process is repeated over five

cycles and in each cycle the selected testing

set is different from those for the other

cycles. The predicted activity value of each

compound based on the weighted average

of its nearest neighbors is calculated using

Eq. (1).

Yx ¼
P

k�nearest neighbors yidiP
k�nearest neighbors di

ð1Þ

where Yx is the predicted activity of ligand

x, yi represent the activities of the closest

k-neighbors, and di is the Euclidean dis-

tance of the compound from its kNNs. The

leave 20 %-out cross-validation coefficient

is calculated by Eq. (2) over five cycles and

the final reported value is the average.

r2L20%O ¼ 1�
PTesting set

x¼1 yx � yxð Þ 2
PTesting set

x¼1 yx � yavg:tr
� �2 ð2Þ

where yx is the experimental bioactivity of

compound x and yavg:tr is the average

bioactivity of training compounds (i.e., after

removing the testing set).

(iv) Determination of Directly and Inversely Propor-

tional Contacts To Bioactivity After identifying

optimal kNN-dbCICA model(s) we scanned the

corresponding intermolecular contacts using mul-

tiple linear regression analysis to identify directly

and inversely proportional binding site contacts

with ligand’s bioactivities. Correlations were

performed by collectively regressing contact

points, identified by a particular high ranking

dbCICA-kNN model, against bioactivity (as log(1/

IC50)) in a single multi-term equation. We then

defined directly proportional contacts points (fa-

vorable contacts) as those having positive regres-

sion slopes, while contact points having negative

regression slopes were defined as being disfavored

(clash points). Accordingly, contacts were classi-

fied as pharmacophoric (positive) contacts and

forbidden (exclusion) contacts. Exclusion contacts

influence bioactivity in a negative way as they

probably resemble sterically inaccessible regions

within the binding pocket.
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Manual generation of pharmacophores guided

by successful kNN-dbCICA models

The best kNN-dbCICA models were used to guide the

building of corresponding pharmacophores to be applied as

search queries for the discovery of new Chk1 inhibitors.

The pharmacophore models were developed via the fol-

lowing steps:

1. The docking conditions that gave the best kNN-

dbCICA models were selected, e.g., Ligandfit docking

of ionized ligands into the binding pocket of a hydrated

protein and using PMF04 as a scoring function (see

Results and Discussion). The corresponding docked

poses/conformers of the most potent-well behaved

training compounds were kept in the binding pocket

while other less potent compounds were removed.

Well-behaved compounds are defined as those training

compounds with well-predicted bioactivities by the

selected optimal kNN-dbCICA model, i.e., they have

the least residual difference between fitted and ex-

perimental bioactivities as predicted by the respective

kNN-dbCICA model.

2. Significant positive molecular atomic contacts within

the binding pocket were displayed and carefully

inspected to determine their close ligands’ moieties.

Agreement among potent, well-behaved training com-

pounds on placing features of common physicochem-

ical properties close to significant contact atom (as

determined by the kNN-dbCICA model) guided us to

place a corresponding pharmacophoric feature onto

that position. For example, if potent, well-behaved

docked compounds have agreed on placing aromatic

rings adjacent to certain kNN-dbCICA significant

contact atoms (within the predefined distance threshold

in the binding pocket) then a hydrophobic aromatic

feature was placed onto the aromatic rings. The

Pharmacophoric features of the optimal models were

added manually from DS2.5.5 feature library and using

default feature tolerance radii (1.6 or 2.2 Å). It has to

be mentioned that the presence of certain significant

contact atom in the binding site vicinity does not

necessarily indicate significant ligand interac-

tion(s) with that particular contact atom in the binding

pocket, but it probably indicates significant interaction

in the neighborhood of that atom.

3. In order to account for the steric constraints of the

binding pocket, binding site atoms that present

significant kNN-based contacts and have negative

linear regression correlations with bioactivity were

presented in the corresponding pharmacophoric mod-

el(s) as centers of exclusion spheres. Negative contacts

point to spaces occupied by docked conformers/poses

of inactive compounds and free from active ones and

therefore can be filled with exclusion volumes. Phar-

macophoric exclusion spheres were added manually

from DS 2.5.5 feature library and employing default

feature radii (1.2 Å).

Receiver operating characteristic (ROC) curve analysis

kNN-dbCICA-based pharmacophores were validated by

evaluating their abilities to selectively discriminate and

identify anti-Chk1 active compounds from a large testing

decoy list composed of few known active ligands and a

large number of decoys [23, 38, 39]. Description on how to

prepare this list together with detailed information about

ROC analysis are found in section SM-2 under the Sup-

plementary Material.

In-silico screening of the NCI-database for new

Chk1 inhibitors

Pharmacophore models derived from best kNN-dbCICA

models were implemented as 3D search queries to mine the

NCI database (238,819 compounds) to discover new anti-

Chk1 inhibitors. Virtual screening was performed using the

‘‘Best Flexible Database Search’’ option available within

CATALYST.

NCI hits were then filtered based on Lipinski’s rule of

five such that only hits of molecular weights B500 dalton,

H-bond donors less B5, H-bond acceptors B10, and log

p B 5 were retained. Remaining hits were fitted against

corresponding kNN-dbCICA pharmacophores using the

‘‘best fit’’ option implemented within CATALYST. Top

ranking hits were obtained from the NCI and later exam-

ined against Chk1.

Biological evaluation of captured hits

Human recombinant Chk1 was purchased from Life

Technology (Carlsbad, CA). The bioassay was conducted

using Invitrogen Z’-LYTE� Ser/Thr 19 Peptide assay kit.

The bioassay was performed as directed in provider pro-

tocol using Chk1 and ATP concentrations of 14 nM and

100 lM, respectively. Hits were tested at different con-

centrations ranged from 100 nM to 100 lM. At least two

data points from each concentration were collected. The

IC50 value of each hit was calculated using nonlinear re-

gression of the log(concentration) vs % inhibition values

using GraphPad Prism 5.0. The settings of the assay were

validated using positive (Staurosporine) and negative

(provided in Z‘-LYTETM Kinase Assay kit) controls.
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Results and discussion

Background

Docking is essentially a conformational searching tool to

find the optimal ligand pose/conformation with certain

binding pocket. However, it can be misleading because of

the inability of docking engines to determine the entropic

cost and therefore free energy of binding. This point

combined with other problems related to the quality of

crystallographic receptor structures (e.g., resolution), the

significance of explicit water molecules in the binding

process, and ionization/flexibility of the binding site can

render docking experiments unreliable and warrant strict

validation [24–27]. However, despite their limitations,

docking engines normally succeed in yielding the ex-

perimental ligand pose/conformation among high-ranking

docked solutions [28–31]. As a result it’s reasonably pos-

sible to find docked inhibitor 3D poses/conformers con-

sistent with corresponding bioactivities [24–26].

In dbCICA, the concern is directed on recognizing a

group of atoms within the binding site that come in contact

with active inhibitors while avoid inactive ones. If these

contact atoms are identified for a docked list of inhibitors,

then one can assume that the docking setting is successful,

i.e., it managed to put the ligands in an arrangement that

can explain bioactivity variation [11–13, 24–26].

Certainly, high ligand-receptor affinity is mediated by

certain list of critical interactions (hotspots). However,

because docking packages and scoring algorithms assess

large number of ligand-receptor interactions while gener-

ating their docking results, the impact of these critical in-

teractions on affinity estimation can be diluted [11–13]. In

this context, determining a group of affinity-discriminating

contact atoms in the binding site (i.e., dbCICA) is not only

supposed to help in validating a particular docking setting,

but also it should help to pinpoint critical ligand-receptors

interactions that correlate with affinity [11–13]. Indeed, the

generated dbCICA models can be used to build

pharmacophores of limited number of binding features that

are computationally efficient to search for new hits [11–

13].

Unfortunately, our experience with dbCICA modeling

tells us that this method occasionally fails to find sets of

binding site contacts capable of explaining bioactivity

variations. We propose that such failures are related to

failure of the combined genetic algorithm-multiple linear

regression analysis (GFA-MLR) implemented within

dbCICA, i.e., in finding optimal binding site contacts ca-

pable of explaining bioactivity. Apparently, the basic fault

behind such failures is related to assuming, and therefore,

enforcing linear relationships between binding site contacts

and corresponding ligands’ bioactivities.

On the other hand, the combination of kNN with GFA

allows efficient search for linear and/or nonlinear QSAR

correlations among extended sets of explanatory descrip-

tors. Accordingly, we assumed that implementing GFA-

kNN in dbCICA analysis should allow access to complex

nonlinear relationships that are otherwise inaccessible us-

ing GFA-MLR-dbCICA modeling. Significant contacts can

be subsequently used as reference points to build binding

pharmacophoric features.

Application of kNN-dbCICA for discovery of new

Chk1 inhibitors

The availability of high-quality crystal structures for the

kinase domain of human Chk1 puts structure-based in-

hibitor design strategies against human Chk1 kinase on

firm footing towards developing new anti-Chk1 inhibitors

as potential anticancer agents [40].

However, structural analysis of single (or few) receptor–

ligand complexes is not adequate to identify critical bind-

ing interactions if it is not followed by appropriate SAR

analysis [34]. Therefore, we decided to implement kNN-

dbCICA modeling to find the optimum docking settings

necessary for effective docking of 192 Chk1 ligands and to

identify critical binding interactions involved in ligand-

Table 1 Highest-ranking Chk1 inhibitors kNN-dbCICA models, their corresponding parameters and statistical criteria

kNN-

dbCICA

model

Ligand

ionization

state

Explicit

watera
Scoring

function

Contact

distance

threshold (Å)b

Optimal number of

nearest neighbors

(k)

Number of

positive

contacts

Number of

negative

contacts

Correlation

statistics

r2 r2LOO
c r2L-20 %

d

1 Ionized Present Ligscore2 3.5 3 8 6 0.76 0.62 0.57

2 Ionized Present PMF04 3.5 4 9 6 0.76 0.67 0.65

a Crystallographically explicit water of hydration
b Distance thresholds used to define ligand-binding site contacts
c Cross-validation correlation coefficients determined by the leave-one-out technique
d Cross-validation correlation coefficients determined by the leave-20 %-out technique repeated five times
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Table 2 Critical binding site

contact atoms proposed by

optimal kNN-dbCICA models

kNN-dbCICA model Amino acids and corresponding atom identitiesa

Positive contacts Negative contacts

1 ALA36:HB1

ASP94:OD2

GLU134:HG1 GLN13:OE1

LEU15:HA LEU137:HD11

LEU84:HB2 LEU84:CD1

VAL23:HB SER88:CA

Water104:O TYR86:CA

Water186:H1 VAL23:HG12

2 ARG95:HH21

ASP94:CG

ASP94:HB2 LYS38:HB1

GLY16:CA VAL23:HG11

GLY16:HA1 Water163:H2

GLY90:CA Water165:O

THR14:HB Water25:H1

Water209:H2 Water64:H1

Water80:O

a Binding site amino acids and their significant atomic contacts. Atom codes are as provided by the protein

data bank file format (e.g., THR14:HB encodes for Hydrogen atom (B) of Threonine number 14) except for

hydrogen atoms which were coded by DS2.5

Fig. 2 Steps for manual generation of binding hypothesis Hypo1 as

guided by kNN-dbCICA model 1 (Tables 2 and 3): a The binding site

moieties in kNN-dbCICA model 1 with significant contact atoms

shown as spheres. b The docked pose of the well-behaved compound

33 (IC50 = 0.8 nM) within the binding pocket c The docked poses of

the well-behaved and potent compounds 33, 34, 41, 4, 18 and 90.
d Manually placed pharmacophoric features onto chemical moieties

common among docked well-behaved potent compounds 33, 34, 41,
4, 18 and 90. e The docked pose of 33 (well-behaved and potent,

IC50 = 0.8 nM) and how it relates to the proposed pharmacophoric

features. f Exclusion spheres fitted against binding site atoms showing

negative correlations with bioactivity (as emergent in kNN-dbCICA

model 1), atom colors were used according to CPK system (H white,

C grey, O red)
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Chk1 complexation. Furthermore, we translated the opti-

mal kNN-dbCICA models into pharmacophore hypotheses

and used them as 3D search queries to search for new anti-

Chk1 inhibitors from NCI database.

Initially all 192 compoundsweredocked into the active site

of Chk1 applying LigandFit [21]. We selected a particular

Chk1 protein structure (3TKI) as docking template based on

its superior resolution (1.6 Å) and the high affinity of its co-

crystallized ligand (IC50 = 0.05 nM) (see Sect. 2.1.4. under

Experimental). Needless to say that high affinity ligands im-

print their corresponding proteins in such a way that exposes

critical binding site hotspots to docked ligands. Critical

binding hotspots need to be readily accessible so that the

docking engine can evaluate interaction energies involving

these hotspots with docked ligands, and therefore, success-

fully explain biological variability among ligands. Moreover,

we strongly believe crystallographic structures corresponding

to high affinity ligands can reasonably replace consideration

of receptor flexibility during docking simulations because

high-affinity ligands modify the conformation of the binding

pocket in the best possible way.

Four docking settings were implemented: Ionized li-

gands versus unionized ligands, and hydrous binding site

versus anhydrous binding site. This workflow is necessary

since it is hard to predict the influence of ligand ionization

and the hydration state of the binding site on the outcome

of docking studies prompting us to evaluate the docking

outcomes of all possible combinations resulting from li-

gand ionization and ATP-binding site hydration.

Consequently, highest-ranking docking solutions were

scored by 7 different scoring functions; namely: LIG-

SCORE1, JAIN, LIGSCORE2, PLP1, PLP2, PMF, and

PMF04 [21].

The highest-ranking conformers/poses, according to

each docking configuration/scoring function, were aligned

together within the binding pocket. Subsequently, inter-

molecular inhibitor-binding site contacts were identified

applying two distance thresholds: 2.5 and 3.5 Å. As a re-

sult, two contacts binary matrices were generated for each

docking solution.

Subsequent implementation of GFA/kNN-based explo-

ration identified many kNN-dbCICA models. However, the

highest ranking models were chosen based on their statis-

tical parameters.

Table 1 shows the contacts’ distance thresholds, list of

positive and negative contacts, and statistical measures of

optimal kNN-dbCICA models. Clearly from the table, hy-

drous binding site and ligand ionization enhanced the qua-

lities of the kNN-dbCICAmodels as both successful models

were based on docking configurations performed on ionized

Fig. 3 Steps for manual generation of binding hypothesis Hypo2 as

guided by kNN-dbCICA model 2 (Tables 2 and 3): a The binding site

moieties in kNN-dbCICA model 2 with significant contact atoms

shown as spheres. b The docked pose of the well-behaved compound

34 (IC50 = 2 nM) within the binding pocket c The docked poses of

the well-behaved and potent compounds 34, 19, 36 and 41.
d Manually placed pharmacophoric features onto chemical moieties

common among docked well-behaved potent compounds 34, 19, 36
and 41. e The docked pose of 34 (well-behaved and potent,

IC50 = 2 nM) and how it relates to the proposed pharmacophoric

features. f Exclusion spheres fitted against binding site atoms showing

negative correlations with bioactivity (as emergent in kNN-dbCICA

model 2), atom colors were used according to CPK system (H: white,

C: grey, O: red)
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ligands into hydrous binding site. Accordingly, it can be

safely assumed that ligand ionization and hydrous binding

site yield the most realistic docking conditions. Moreover,

PMF04 scoring function seems to be the most successful in

aligning the docked molecules in such a way to correlate the

docked poses with corresponding bioactivities, as seen in the

statistical criteria of kNN-dbCICA model 2 (Table 1).

Table 2 shows important Chk1 active site contact atoms

(both positive and negative ones) suggested by optimal

kNN-dbCICA models 1 and 2. Clearly from the table, the

highest ranking kNN-dbCICA models point to almost

completely different sets of binding site contacts, sug-

gesting two different corresponding binding modes.

Figures 2 and 3 show how dbCICA models 1 and 2

were translated into corresponding pharmacophores (hy-

po1 and hypo2, respectively) within Discovery Studio

2.5 environment (see Sect. 2.1.7 under Experimental).

Initially, the significant contact atoms in the binding

pockets were marked in spherical forms (see a in Figs. 2,

3). Subsequently, we kept only potent (IC50\ 15 nM)

and well-behaved docked compounds in the binding

pocket, i.e., those of least difference between ex-

perimental and fitted bioactivities (determined by kNN-

dbCICA models 1 or 2) as shown in b and c in Figs. 2

and 3. Thereafter, proper pharmacophoric features were

placed onto common aligned chemical functionalities

Table 3 Pharmacophoric

features, corresponding

tolerances and 3D coordinates

(X, Y, Z) of optimal kNN-

dbCICA-based pharmacophore

models

Modela Definitions Chemical features

Hbicc Hbic HBDd HBAe PosIonf

Hypo1h Tolerancesb 1.60 1.60 2.20 1.60 2.20 1.60 1.60

Coordinates

x 20.84 11.70 9.06 10.30 22.30 21.65 26.77

y -3.32 -0.38 0.83 -1.65 0.90 -0.18 -4.93

z 9.08 10.81 13.53 12.37 4.68 7.40 12.06

HBA Hbic-

Aromg
Hbic PosIon

Hypo2i Tolerances 2.20 1.60 1.60 1.60 1.60

Coordinates

x 23.64 21.65 20.74 22.23 26.92

y 1.62 -0.12 -1.87 -5.15 -4.12

z 5.94 7.37 8.49 8.78 11.58

a As in Table 2
b Refer to the radii of the feature spheres (Å)
c Hydrophobic feature
d Hydrogen Bond Donor feature
e Hydrogen Bond Acceptor feature
f Positive Ionizable feature
g Aromatic hydrophobic feature
h Number of Associated Exclusion Spheres = 6 of 1.2 Å tolerance, at the following X, Y, Z coordinates:

(22.02, -3.43, 1.94), (15.30, 0.12, 12.85), (8.32, -1.12, 9.73), (20.96, 3.66, 6.53), (14.80, 3.19, 6.30) and

(12.41, -4.24, 7.97)
i Number of Associated Exclusion Spheres = 6 of 1.2 Å tolerance, at the following X, Y, Z coordinates:

(9.23, -4.08, 9.40), (13.80, -3.86, 9.02), (23.40, -5.05, 12.61), (23.61, -2.45, 12.25), (14.75, -3.25,

13.59), (17.00, -2.20, 12.93)

Fig. 4 Comparison between the

co-crystallized pose of 3TKI

ligand (Green, PDB code:

3TKI, Resolution 1.6 Å) and its

docked pose according to

docking conditions of kNN-

dbCICA models 1 (on the left,

Red) and 2 (on the right, Blue)

as in Table 1
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among docked compounds in such a way to highlight the

interactions encoded by the critical contacts, as in d and

e in Figs. 2 and 3. For example, in kNN-dbCICA model

1, emergence of significant contact at the carboxylic

oxygen of ASP94, combined with the consensus of well-

behaved, potent docked ligands on placing nearby qua-

ternary ammonium groups, prompted us to place a

positive ionizable feature onto the ligand’s ammonium

groups (Fig. 2d). Similarly, agreement of docked, potent

and well-behaved compounds on placing hydrophobic

moieties near the hydrogen atoms HB1 and HA of

ALA36 and LEU15, respectively (both emerged as sig-

nificant contacts in model 1, Table 2), prompted us to

place hydrophobic pharmacophoric features onto both

hydrophobic positions within the ligands, as in Fig. 2d.

Comparably, agreement among potent, well-behaved

compounds in positioning their pyrazole rings close to

the oxygen atom of Water104 (which is a critical contact

in kNN-dbCICA model 1) in such a way that the sp2

hybridized pyrazole nitrogen is projected towards

Water104 suggested placing hydrogen bond acceptor

feature in that location, as in Fig. 2d, e.

Finally, the agreement among docked, potent and well-

behaved training compounds in placing phenol groups at

close proximity (i.e., within contact threshold distance of

3.5 Å) to the critical hydrogen contact of LEU84 prompted

us to look for a nearby interaction responsible for this

contact. We quickly realized that a hydrogen-bonding in-

teraction tying the ligands’ phenolic hydroxyls to Water49

(shown in Fig. 2d) is most likely responsible for this sig-

nificant contact. Accordingly, we positioned a hydrogen

bond donor feature onto the ligands’ phenolic hydroxyls to

encode for this interaction. Incidentally, Water49 is fixed

by hydrogen-bonding to ASN59 via bridging Water27

(hydrogen bonding bridge components are shown in green

labels) as shown in Fig. 2d. A similar approach was im-

plemented for building Hypo2 pharmacophore based on

kNN-dbCICA model 2, as in Fig. 3. Table 3 shows the X,

Y, Z coordinates of the two pharmacophores.

It remains to be mentioned that significant inverse inter-

molecular contacts identified by kNN-dbCICA modeling

(Table 2) were annotated as exclusion spheres in the phar-

macophore models to indicate sterically disfavored areas for

ligand binding within the binding pocket (Figs. 2, 3).
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Fig. 5 Receiver operating characteristic (ROC) curves of kNN-dbCICA-based pharmacophores. a Hypo1, b Hypo2

Table 4 ROCa performances of

kNN-dbCICA selected

pharmacophores as 3D search

queries

Pharmacophore model ROCa–AUCb ACCc SPCd TPRe FNRf

Hypo1 1.00 0.97 0.99 0.21 0.0073

Hypo2 0.88 0.97 0.99 0.29 0.0097

a ROC receiver operating characteristic
b AUC area under the curve
c ACC overall accuracy
d SPC overall specifity
e TPR overall true positive rate
f FNR overall false negative rate
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Table 5 High-ranking captured hits by kNN-dbCICA models 1 and 2, predicted IC50 values according to QSAR Eq. (1) and in vitro bioactivities

Hita NCI code Hit captured by Predicted IC50 (nM) based on kNN-dbCICA modelsb % inhibition at 10 lM IC50 (lM)

1 2

193 35839 Hypo1 NAc NAc -28 –

194 38278 Hypo1 NAc NAc -21 –

195 38279 Hypo1 96.9 13.9 -23 –

196 50464 Hypo1 NAc NAc 5 -

197 53212 Hypo1 NAc NAc -22 -

198 57149 Hypo1 NAc NAc 0 –

199 63689 Hypo1 NAc NAc -23 –

200 63697 Hypo1 NAc NAc 0 –

201 65373 Hypo1 NAc NAc 6 –

202 67544 Hypo1 NAc NAc 3 –

203 70706 Hypo1 NAc NAc 0 –

204 72378 Hypo1 NAc NAc 0 –

205 79546 Hypo2 2.0 675.3 0 –

206 79549 Hypo2 1.7 3.1 0 –

207 79550 Hypo2 1.7 3.1 -27 –

208 80117 Hypo1 20.0 96.9 16 69.7

209 86367 Hypo2 1.0 4.0 80 2.4

210 86370 Hypo2 8.6 1.0 89 2.6

211 94026 Hypo2 5.4 2.9 0 –

212 138659 Hypo2 11.0 6.3 2 –

213 138660 Hypo2 1.0 1.6 0 –

214 138661 Hypo2 11.0 1.6 0 –

215 143704 Hypo2 1.8 2.9 -34 –

216 153422 Hypo2 1.4 3.9 -31 –

217 166674 Hypo2 1.5 1.9 -33 –

218 168201 Hypo2 1.0 2.7 -29 –

219 171554 Hypo2 3.6 4.8 -33 –

220 179207 Hypo2 1.0 2.7 -39 –

221 212051 Hypo2 1.0 3.1 -22 –

222 240871 Hypo2 1.8 2.7 -21 –

223 246014 Hypo2 1.0 4.8 0 –

224 287977 Hypo2 144.5 2.8 -22 –

225 355457 Hypo2 1.5 1.1 -30 –

226 363250 Hypo2 2.8 6.0 0 –

227 378695 Hypo2 1.3 6.4 -39 –

228 405323 Hypo2 144.5 29.3 -29 –

229 653279 Hypo2 1.0 160.5 -22 –

Staurosporineg – 100 0.068d

a Hits numbers are as in Fig. 6
b Predicted anti-Chk1 IC50 values based on each kNN-dbCICA model through Eq. (1)
c Not predicted as it failed to dock
d Standard positive control inhibitor [37]
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Validation of kNN-dbCICA models

Self docking

To evaluate the docking conditions proposed by kNN-

dbCICA models 1 and 2 in Table 1, we compared the ex-

perimental crystallographic pose of a co-crystallized ligand

within Chk1 (PDB code: 3TKI, Resolution 1.6 Å) with the

corresponding docked poses of the ligand resulting from

the docking/scoring conditions of kNN-dbCICA models (1)

and (2). Figure 4 shows a comparison between the two

cases. Clearly from the figure, both docking conditions

closely reproduced the experimental co-crystallized pose of

the ligand giving further confidence to our kNN-dbCICA

modeling results, where the RMSD values between the co-

crystallized ligand and the two poses were equal to 1.02 Å,

i.e., in both models. This probably happened because both

docking conditions converged on the same docked pose for

the 3TKI ligand.

Receiver operating characteristic (ROC) curve analysis

of Hypo1 and Hypo2

To further validate the resulting models (both kNN-

dbCICA-based docking settings and corresponding phar-

macophores), Hypo1 andHypo2were subjected to receiver-

operating characteristic (ROC) analysis. In ROC analysis,

the ability of a particular pharmacophore model to correctly

rank a list of compounds as actives or inactives is indicated

by the area under the curve (AUC) of the resulting ROC in

addition to other parameters: overall accuracy, overall

specificity, overall true positive rate and overall false

negative rate (see Sect. 2.1.8 formore details). Figure 5 and

Table 4 show the ROC performances of our dbCICA-based

pharmacophores.

Looking at Table 4, it can be concluded that Hypo1

performs better than Hypo2 based on ROC-AUC, ACC,

SPC, and FNR, except for TPR value which was slightly

better for Hypo2. Still, both models illustrated excellent

overall ROC profiles warranting their use as 3D search

queries to mine the NCI database for new Chk1 inhibitors.

In silico screening of databases and subsequent in vitro

bioassay

The ultimate validation of kNN-dbCICA methodology is to

assess the ability of the pharmacophore models (Hypo1 and

Hypo2) as successful virtual 3D search queries capable of

catching new Chk1 inhibitors. Therefore, we employed

Hypo1 and Hypo2 to search the national cancer institute

(NCI) list of compounds (contains 238,819 compounds) for

new Chk1 inhibitors. Captured hits were subsequently

filtered by a molecular weight threshold of 500 dalton in

order to remove large, non-drug-like compounds [35, 36].

The remaining hits were ranked according to their good-

ness-of-fit against their corresponding capturing pharma-

cophores (i.e., Hypo1 and Hypo2) and the best 37 were

acquired from the NCI for in vitro evaluation against Chk1.

We attempted to predict the bioactivities of these hits by

docking them into Chk1 protein binding pocket (PDB

code: 3TKI) employing the same docking conditions of

kNN-dbCICA models 1 and 2 (Table 1) followed by

analyzing the docked poses for critical contacts according

to kNN-dbCICA models 1 and 2 (Table 2). However, some

hits failed to dock within Chk1 binding site. We believe the

main reason for this observation is related to the fact that

pharmacophore features are expressed as spheres (not

points) allowing certain margins of spatial tolerances for

corresponding overlapping chemical features of molecules

captured by virtual screening. That is, chemical features of

hit molecules are tolerated to spatially fit within pharma-

cophoric spheres rather than pharmacophoric points. Tol-

erance spheres in pharmacophore models are intended to

compensate for the conformational perturbations of protein

receptors at physiological temperatures. Accordingly, it is

not necessary for a particular hit compound captured by

certain structure-based pharmacophore model to dock

neatly within the corresponding crystallographic binding

pocket of the receptor because pharmacophore modeling

attempts to simulate different conformational states of the

respective binding pocket, while the corresponding crys-

tallographic structure is a rigid representation of the bind-

ing pocket in a single conformational state. Another

problem that might cause this discrepancy, i.e., failure of

pharmacophoric hits to dock into corresponding crystallo-

graphic binding pockets, is the fact that pharmacophore

models lack proper presentation of the steric constrains of

the binding pocket [16, 41–43], meaning that some hits are

‘‘larger’’ than the binding pocket despite being successfully

fitted against the corresponding pharmacophores. This

weakness can be remedied by decorating the pharma-

cophoric model with appropriate exclusion spheres to

characterize the steric limits of the binding pocket. How-

ever, we decided to limit the number of exclusion spheres

in the models to those suggested by optimal kNN-dbCICA

models to provide balanced analysis of the capabilities of

this novel approach, i.e., without implementing extra

techniques to improve the performance of the resulting

pharmacophores such as use of external algorithms to add

more exclusion spheres.

Table 5 and Fig. 6 show captured hits of best fits against

corresponding pharmacophores (Hypo1 or Hypo2), their

kNN-dbCICA based predictions, as well as their ex-

perimental in vitro bioactivities. Several hits showed
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‘‘negative’’ inhibitory readouts at 10 lM probably due to

bioassay artifacts. The fact that we implemented a FRET–

based bioassay suggests that hit molecules of electron-

deficient extended aromatic ring systems interfered in the

fluorescence of assay fluorophores, thus causing ‘‘nega-

tive’’ inhibitory readouts. Such interferences are not un-

common in FRET-based bioassay results [45]. However, to

avoid erroneously assigning bioactivities to these com-

pounds, we decided not to evaluate their IC50 s.

Still, three hits showed significant anti-Chk1 properties

at 10 lM, namely, 208, 209, and 210. Subsequent follow

up showed they have anti-Chk1 IC50 values ranging from

2.4-69.7 lM (NMR and mass spectroscopic charts of the

compounds are shown in Supplementary Materials). It’s

noteworthy to mention that the two most active hits were

captured by Hypo2 and many inactive hits failed to dock

inside the active site of Chk1. Figure 7 shows the three

anti-Chk1 hits 208, 209 and 210, and how they map Hypo1

and Hypo2 overlaid onto Chk1 binding site (showing cri-

tical contacts corresponding to models 1 and 2, Tables 1

and 2). Interestingly, the three active hits show similar

interactions to those seen with training compounds as in

Figs. 2 and 3 and related discussion.

Although 208, 209 and 210 show mediocre anti-Chk1

bioactivities, i.e., compared to published inhibitors [44],

their significance stems out from the fact that they present

new chemical scaffolds as Chk1 inhibitors.

Interestingly, our assay conditions yielded an IC50 value

of 68 nM for the standard pan kinase inhibitor stau-

rosporine, which is reasonably comparable with the lit-

erature value for this inhibitor (i.e., 2.1 nM) [37].

Conclusion

As the understanding of signaling events at the molecular

level leading to the checkpoint arrests during DNA damage

started to emerge during the last few years, Chk1 has been

considered as one of the most attractive targets for drug

discovery of anticancer agents.

The drawbacks of the structure-based design combined

with the inadequacies of corresponding validation methods

prompted us to envisage a novel validation approach based

on 3D-QSAR analysis, namely Docking-Based Com-

parative Intermolecular Contacts Analysis with the statis-

tical tool k-Nearest Neighbour (kNN-dbCICA). In the

current project we employed a wide range of docking

configurations (7 scoring functions) to dock 192 published

inhibitors into the binding pocket of Chk1 (PDB code:

3TKI). Moreover, the inhibitors were docked in their ion-

ized and unionized forms into the hydrous and anhydrous

versions of the binding pocket.

The novel methodology; kNN-dbCICA, was very useful

in identifying and validating the optimal docking con-

figurations. Interestingly, PMF04 and LigScore2 based

scoring were superior over other scoring functions; ligand

ionization and protein hydration seem to enhance the

strength of the resulting kNN-dbCICA models.

Two docking configurations were found to achieve self-

consistent kNN-dbCICA models that were consequently

used to construct corresponding pharmacophoric hypothe-

ses that were utilized to screen the NCI list of compounds.

Experimental validation by in vitro assay using Chk1 kit

proved anti Chk1 activities for three hit molecules, with the

most active having IC50 of 2.4 lM.
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